The Prediction of CO2 Emissions from Manufacturing Industry Based on GM(1,N) Model and SVM in Chongqing

Author(s):  
Yu Wang ◽  
Shuai Yang
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1161
Author(s):  
Maedeh Rahnama Mobarakeh ◽  
Miguel Santos Silva ◽  
Thomas Kienberger

The pulp and paper (P&P) sector is a dynamic manufacturing industry and plays an essential role in the Austrian economy. However, the sector, which consumes about 20 TWh of final energy, is responsible for 7% of Austria’s industrial CO2 emissions. This study, intending to assess the potential for improving energy efficiency and reducing emissions in the Austrian context in the P&P sector, uses a bottom-up approach model. The model is applied to analyze the energy consumption (heat and electricity) and CO2 emissions in the main processes, related to the P&P production from virgin or recycled fibers. Afterward, technological options to reduce energy consumption and fossil CO2 emissions for P&P production are investigated, and various low-carbon technologies are applied to the model. For each of the selected technologies, the potential of emission reduction and energy savings up to 2050 is estimated. Finally, a series of low-carbon technology-based scenarios are developed and evaluated. These scenarios’ content is based on the improvement potential associated with the various processes of different paper grades. The results reveal that the investigated technologies applied in the production process (chemical pulping and paper drying) have a minor impact on CO2 emission reduction (maximum 10% due to applying an impulse dryer). In contrast, steam supply electrification, by replacing fossil fuel boilers with direct heat supply (such as commercial electric boilers or heat pumps), enables reducing emissions by up to 75%. This means that the goal of 100% CO2 emission reduction by 2050 cannot be reached with one method alone. Consequently, a combination of technologies, particularly with the electrification of the steam supply, along with the use of carbon-free electricity generated by renewable energy, appears to be essential.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8006
Author(s):  
Kristiāna Dolge ◽  
Dagnija Blumberga

The manufacturing industry is often caught in the sustainability dilemma between economic growth targets and climate action plans. In this study, a Log-Mean Divisia Index (LMDI) decomposition analysis is applied to investigate how the amount of industrial energy-related CO2 emissions in Latvia has changed in the period from 1995 to 2019. The change in aggregate energy-related CO2 emissions in manufacturing industries is measured by five different factors: the industrial activity effect, structural change effect, energy intensity effect, fuel mix effect, and emission intensity effect. The decomposition analysis results showed that while there has been significant improvement in energy efficiency and decarbonization measures in industry, in recent years, the impact of the improvements has been largely offset by increased industrial activity in energy-intensive sectors such as wood processing and non-metallic mineral production. The results show that energy efficiency measures in industry contribute most to reducing carbon emissions. In the future, additional policies are needed to accelerate the deployment of clean energy and energy efficiency technologies.


2011 ◽  
Vol 88 (6) ◽  
pp. 2273-2278 ◽  
Author(s):  
Elif Akbostancı ◽  
Gül İpek Tunç ◽  
Serap Türüt-Aşık

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3021
Author(s):  
Ran Motoori ◽  
Benjamin McLellan ◽  
Andrew Chapman ◽  
Tetsuo Tezuka

Japan is a nation which is highly dependent on the import of raw materials to supply its manufacturing industry, notable among them copper. When extracting copper from ore, a large amount of energy is required, typically leading to high levels of CO2 emissions due to the fossil fuel-dominated energy mix. Moreover, maintaining security of raw material supply is difficult if imports are the only source utilized. This study examines the environmental and economic impacts of domestic mineral production from the recycling of end-of-life products and deep ocean mining as strategies to reduce CO2 emissions and enhance security of raw material supplies. The results indicate that under the given assumptions, recycling, which is typically considered to be less CO2 intensive, produces higher domestic emissions than current copper processing, although across the whole supply chain shows promise. As the total quantity of domestic resources from deep ocean ores are much smaller than the potential from recycling, it is possible that recycling could become a mainstream supply alternative, while deep ocean mining is more likely to be a niche supply source. Implications of a progressively aging society and flow-on impacts for the recycling sector are discussed.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4800 ◽  
Author(s):  
Chao-Qun Ma ◽  
Jiang-Long Liu ◽  
Yi-Shuai Ren ◽  
Yong Jiang

Since the reform and opening-up, China’s CO2 emissions have increased dramatically, and it has become the world’s largest CO2 emission and primary energy consumption country. The manufacturing industry is one of the biggest contributors to CO2 emission, and determining the drivers of CO2 emissions are essential for effective environmental policy. China is also a vast transition economy with great regional differences. Therefore, based on the data of China’s provincial panel from 2000 to 2013 and the improved STIRPAT model, this paper studies the impact of economic growth, foreign direct investment (FDI) and energy intensity on China’s manufacturing carbon emissions through the fixed-effect panel quantile regression model. The results show that the effects of economic growth, FDI and energy intensity on carbon emissions of the manufacturing industry are different in different levels and regions, and they have apparent heterogeneity. In particular, economic growth plays a decisive role in the CO2 emissions of the manufacturing industry. Economic growth has a positive impact on the carbon emissions of the manufacturing industry; specifically, a higher impact on high carbon emission provinces. Besides, FDI has a significant positive effect on the upper emission provinces of the manufacturing industry, which proves that there is a pollution paradise hypothesis in China’s manufacturing industry, but no halo effect hypothesis. The reduction of energy intensity does not have a positive effect on the reduction of carbon emissions. The higher impact of the energy intensity of upper emission provinces on carbon emissions from their manufacturing industry, shows that there is an energy rebound effect in China’s manufacturing industry. Finally, our study confirms that China’s manufacturing industry has considerable space for emission reduction. The results also provide policy recommendations for policymakers.


2019 ◽  
Vol 40 (01) ◽  
Author(s):  
Ken’ichi Matsumoto ◽  
Yosuke Shigetomi ◽  
Hiroto Shiraki ◽  
Yuki Ochi ◽  
Yuki Ogawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document