copper production
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 94)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Damjan Hann

Abstract in English Copper is widely used in the modern world. An excellent conductor of electricity, it is used in the electrical industry, in the construction industry because of its good corrosion resistance, and in the manufacture of heat exchangers in heating and cooling systems owing to its excellent thermal conductivity. Copper production has increased throughout the twentieth century, and this trend has continued over the last twenty years. The demand for copper is expected to increase significantly by the year 2030. Owing to the high prices of this metal and the lack of deposits, part of the demand can be met by extraction from copper-bearing tailings. In the past, owing to the lower level of technological development and lower copper prices, materials comparable in copper content to the copper ores mined today have ended up in tailings. Since these are already processed materials, the costs of mining, crushing and milling are largely eliminated, making them promising raw materials. The article presents the technological possibilities of reprocessing and also estimates the amount of copper that could be obtained worldwide in this way.


2022 ◽  
pp. 525-537
Author(s):  
Mark E. Schlesinger ◽  
Kathryn C. Sole ◽  
William G. Davenport ◽  
Gerardo R.F. Alvear Flores
Keyword(s):  

2021 ◽  
Vol 100 (12) ◽  
pp. 1443-1448
Author(s):  
Georgiy Ya. Lipatov ◽  
Ekaterina E. Shmakova ◽  
Vadim I. Adrianovskiy ◽  
Natalia V. Zlygosteva ◽  
Eduard G. Plotko

Introduction. The primary materials for copper production are sulfide copper-nickel and oxidized ores with a copper percentage of 1.5-4%, traditionally processed by the pyrometallurgical method. For processing depleted copper-containing raw materials (less than 1%), the pyrometallurgical approach is not commonly suitable. The introduced hydrometallurgical way differs by including in one production process, combined underground leaching of ore, extraction of copper from solution, and the following electrolysis. At the same time, insufficient attention is paid to the hydrometallurgical method of processing depleted copper raw materials from a hygienic standpoint in our country. Materials and methods. Based on the results of our research carried out at copper-smelting plants using pyro- and hydrometallurgical methods of processing raw materials, a comparative analysis was carried out for such indicators as the pollutants content in the workplaces’ air at different stages of production, predicted values of occupational cancer risks, toxicity indicators, and the health and essential physiological functions of workers. Results. Working under increased heat intensity in hot shops, exposure to sulfur-containing gases and industrial aerosols leads to significant changes in hemodynamics and thermoregulation stress in workers. In the hydrometallurgical production of copper, the only occupational hazard exceeding hygienic standards is sulfuric acid vapours, and changes in physiological parameters and thermoregulation are insignificant. The predicted values of occupational cancer risk for hydrometallurgical machines operators exceed the acceptable level after 9-10 years of working experience. For smelters, an unacceptable level of risk is achieved with up to 5 years of working experience. Conclusion. For the first time in the country, a hygienic assessment of the hydrometallurgical method of processing depleted copper raw materials was proved to be the only appropriate method of improving working conditions in copper production.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Dušan Oráč ◽  
Jakub Klimko ◽  
Dušan Klein ◽  
Jana Pirošková ◽  
Pavol Liptai ◽  
...  

Copper anode furnace dust is waste by-product of secondary copper production containing zinc, lead, copper, tin, iron and many other elements. Hydrometallurgical Copper Anode Furnace dust recycling method was studied theoretically by thermodynamic calculations and the proposed method was verified experimentally on a laboratory scale. The optimum condition for leaching of zinc from dust was identified to be an ambient leaching temperature, a liquid/solid ratio of 10 and H2SO4 concentration of 1 mol/L. A maximum of 98.85% of zinc was leached under the optimum experimental conditions. In the leaching step, 99.7% of lead in the form of insoluble PbSO4 was separated from the other leached metals. Solution refining was done by combination of pH adjustment and zinc powder cementation. Tin was precipitated from solution by pH adjustment to 3. Iron was precipitated out of solution after pH adjustment to 4 with efficiency 98.54%. Copper was selectively cemented out of solution (99.96%) by zinc powder. Zinc was precipitated out of solution by addition of Na2CO3 with efficiency of 97.31%. ZnO as final product was obtained by calcination of zinc carbonates.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260518
Author(s):  
David Luria

Following the Egyptian withdrawal in the mid-12th century BCE from their involvement in the Arabah copper production, and after an additional period of organization, the degree of copper efficiency and production at Timna and Faynan increased in the Early Iron Age (11th–9th centuries), rendering the region the largest and most advanced smelting centre in the Levant. The existing paradigm offered as an explanation for this technical and commercial success is based on extraneous influence, namely, the campaign of Pharaoh Sheshonq I near the end of the 10th century BCE that spurred a renewed Egyptian involvement in the Arabah copper industry. An alternative paradigm is suggested here, viewing the advances in Arabah copper technology and production as a linear development and the outcome of continuous and gradual indigenous improvements on the part of local craftsmen, with no external intervention. Behind these outstanding technical achievements stood excellent managerial personnel, supported by an innovative technical team. They employed two techniques for copper-production optimization that can be defined based on concepts taken from the world of modern industrial engineering: (i) "trial and error", in which the effect of each production variable was tested individually and separately, and (ii) "scaling-up", in which the size of some production elements (i.e., tuyère) was increased by using existing techniques which required minimum developmental costs and experimental risks.


2021 ◽  
Vol 40 ◽  
pp. 103255
Author(s):  
Ivan S. Stepanov ◽  
Dmitry A. Artemyev ◽  
Anton M. Naumov ◽  
Ivan A. Blinov ◽  
Maksim N. Ankushev

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1326
Author(s):  
Martina Laubertová ◽  
Alexandra Kollová ◽  
Jarmila Trpčevská ◽  
Beatrice Plešingerová ◽  
Jaroslav Briančin

The subject of interest in this study was lead cementation with zinc from solution after conventional agitate acidic leaching of converter dust from secondary copper production. The kinetics of lead cementation from an acid solution of lead acetate using zinc powder was studied. The optimal cementation conditions for removing lead from the solution were determined to have a stirring intensity of 300 rpm, a zinc particle size distribution <0.125–0.4> mm and an ambient temperature. Under these conditions, an almost 90% efficiency in removing lead from solution was achieved. The cementation precipitate contains Pb, and a certain amount of Cu. Lead is present in the cementation precipitate in the PbO, Pb5O8 and Pb(Cu2O2) phases. The solution after cementation was also refined from copper. The solution can be used for further processing in order to obtain a marketable Zn-based product. The resulting cementation precipitate can be further processed and modified to obtain a lead-based product. A kinetic study of the process of lead cementation from solution was also carried out. Based on experimental measurements, the value of apparent activation energy (Ea) which was found to be ~18.66 kJ·mol−1, indicates that this process is diffusion controlled in the temperature range 293–333 K.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1785
Author(s):  
Sangyun Seo ◽  
Gwang Seop Lee ◽  
Hye Rim Kim ◽  
Jong-Gwan Kim

Solvent extraction (SX) is one of the most widely applied hydrometallurgical processes in copper production from oxide ore. As the high-grade ore deposits have been developed and depleted, now only low-grade ore deposits are being developed and are therefore facing obstacles of extreme processing conditions. This results in leaching gangue minerals and requires a more complicated solvent extraction system. Recently, synergistic solvent extraction has been introduced to separate copper from the leached solution with high impurities. However, operational obstacles arise due to the complicated solvent extraction process, including multi-stages of extraction, and using more than one extractant in a single solvent extraction system. The phase separation in solvent extraction is one of the major issues in field operation. A poor phase separation could affect the entire process and eventually cause production loss. Therefore, in this study, the phase separation behaviours were studied in consideration of the field operation. Major parameters considered in the study were the type of diluent, temperature, mixing speed, solution pH and Oxidation Reduction Potential (ORP), and addition of impurities (flocculant and colloidal silica). The phase separation behaviours in the continuous counter-current SX system using a pilot-scale mixer-settler in the above conditions was investigated.


2021 ◽  
Vol 322 ◽  
pp. 129144
Author(s):  
Fritz T.C. Röben ◽  
Nikolas Schöne ◽  
Uwe Bau ◽  
Markus A. Reuter ◽  
Manuel Dahmen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document