Reduction of truncation error using Richardson extrapolation in the finite difference and finite element analysis of one dimensional electrostatics problems

Author(s):  
W.E. Hutchcraft ◽  
R.K. Gordon
Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


Author(s):  
Pedro V. Marcal ◽  
Jeffrey T. Fong ◽  
Robert Rainsberger ◽  
Li Ma

In most finite-element-analysis codes, accuracy is achieved through the use of the hexahedron hexa-20 elements (a node at each of the 8 corners and 12 edges of a brick element). Unfortunately, without an additional node in the center of each of the element’s 6 faces, nor in the center of the hexa, the hexa-20 elements are not fully quadratic such that its truncation error remains at h2(0), the same as the error of a hexa-8 element formulation. To achieve an accuracy with a truncation error of h3(0), we need the fully-quadratic hexa-27 formulation. A competitor of the hexa-27 element in the early days was the so-called serendipity cubic hexa-32 solid elements (see Ahmad, Irons, and Zienkiewicz, Int. J. Numer. Methods in Eng., 2:419–451 (1970) [1]). The hexa-32 elements, unfortunately, also suffer from the same lack of accuracy syndrome as the hexa20’s. In this paper, we investigate the accuracy of various elements described in the literature including the fully quadratic hexa-27 elements to a shell problem of interest to the pressure vessels and piping community, viz. the shell-element-based analysis of a barrel vault. Significance of the highly accurate hexa-27 formulation and a comparison of its results with similar solutions using ABAQUS hexa-8, and hexa-20 elements, are presented and discussed. Guidelines are proposed for selection of better elements.


1994 ◽  
Vol 31 (2) ◽  
pp. 145-150
Author(s):  
C.B. Crawford ◽  
H. Jitno ◽  
P.M. Byrne

The discrepancy between calculated consolidation settlements and measured settlements under a 3.8 m high section of an earth embankment is investigated in this paper. A conventional one-dimensional analysis underestimated the observed settlement by 40%. A two-dimensional finite-element analysis was carried out to assess the effects of lateral spreading on vertical movements, and the results were in close agreement with the measured values. Key words : case history, consolidation, finite element analysis, settlement.


Sign in / Sign up

Export Citation Format

Share Document