Impacts of bad data injection on power systems security: Intruder point of view

Author(s):  
Sina Gharebaghi ◽  
Seyed Hamid Hosseini ◽  
Milad Izadi ◽  
Amir Safdarian
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2301
Author(s):  
Yun-Sung Cho ◽  
Yun-Hyuk Choi

This paper describes a methodology for implementing the state estimation and enhancing the accuracy in large-scale power systems that partially depend on variable renewable energy resources. To determine the actual states of electricity grids, including those of wind and solar power systems, the proposed state estimation method adopts a fast-decoupled weighted least square approach based on the architecture of application common database. Renewable energy modeling is considered on the basis of the point of data acquisition, the type of renewable energy, and the voltage level of the bus-connected renewable energy. Moreover, the proposed algorithm performs accurate bad data processing using inner and outer functions. The inner function is applied to the largest normalized residue method to process the bad data detection, identification and adjustment. While the outer function is analyzed whether the identified bad measurements exceed the condition of Kirchhoff’s current law. In addition, to decrease the topology and measurement errors associated with transformers, a connectivity model is proposed for transformers that use switching devices, and a transformer error processing technique is proposed using a simple heuristic method. To verify the performance of the proposed methodology, we performed comprehensive tests based on a modified IEEE 18-bus test system and a large-scale power system that utilizes renewable energy.


2002 ◽  
Vol 12 (06) ◽  
pp. 1333-1356 ◽  
Author(s):  
YOSHISUKE UEDA ◽  
HIROYUKI AMANO ◽  
RALPH H. ABRAHAM ◽  
H. BRUCE STEWART

As part of an ongoing project on the stability of massively complex electrical power systems, we discuss the global geometric structure of contacts among the basins of attraction of a six-dimensional dynamical system. This system represents a simple model of an electrical power system involving three machines and an infinite bus. Apart from the possible occurrence of attractors representing pathological states, the contacts between the basins have a practical importance, from the point of view of the operation of a real electrical power system. With the aid of a global map of basins, one could hope to design an intervention strategy to boot the power system back into its normal state. Our method involves taking two-dimensional sections of the six-dimensional state space, and then determining the basins directly by numerical simulation from a dense grid of initial conditions. The relations among all the basins are given for a specific numerical example, that is, choosing particular values for the parameters in our model.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5041
Author(s):  
Waldemar Minkina

The article presents problems occurring during remote temperature measurement of lashing clamps of bridge connections on high voltage poles using thermal imaging cameras. The basic metrological parameters of thermal imaging cameras are described. On this basis, typical errors made during the inspection of high voltage lines supplying power substations are presented using infrared cameras. Researching the possible solutions for the problems of remote temperature measurement of small objects of electricity power systems—on the example of lashing clamps of bridge connections on high voltage poles in the proposed paper and showing the basic metrological aspects and parameters of thermal imaging cameras are important because, in this way, it is observed to eliminate costly interruptions in the supply of electricity associated with the breaking of power lines. Small objects are quite difficult to be controlled and monitored on large grids and on large powerline poles; thus, it is very challenging to interpret the data offered by thermograms. The problem of remote temperature measurement of small objects in electrical power engineering is very important from the point of view of the quality and reliability of electricity supply. Obtaining early warning information about the occurrence of overheating, e.g., on lashing clamps of bridge connections, is very important, as it eliminates costly interruptions in the supply of electricity associated with the breaking of power lines supplying high voltage switchgears or substations.


2014 ◽  
pp. 16-21
Author(s):  
S. Vazquez-Rodriguez ◽  
R. J. Duro

In this paper we have addressed the problem of observability of power systems from the point of view of topological observability and using genetic algorithms for its determination. The objective is to find a way to determine if a system is observable by establishing if a spanning tree of the system that verifies certain properties with regards to the use of available measurements can be obtained. To this end we have developed a genotype-phenotype transformation scheme for genetic algorithms that permits using very simple genetic operators over integer based chromosomes which after a building process can become very complex trees. The procedure was successfully applied to standard benchmark systems and we present some results for one of them.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Djohra Saheb-Koussa ◽  
Mustapha Koussa ◽  
Nourredine Said

This paper studies the technical, economic, and environmental analysis of wind and photovoltaic power systems connected to a conventional grid. The main interest in such systems is on-site consumption of the produced energy, system hybridization, pooling of resources, and contribution to the environment protection. To ensure a better management of system energy, models have been used for determining the power that the constituting subsystems can deliver under specific weather conditions. Simulation is performed using MATLAB-SIMULINK. While, the economic and environmental study is performed using HOMER software. From an economic point of view, this allows to compare the financial constraints on each part of the system for the case of Adrar site which is located to the northern part of the south of Algeria. It also permits to optimally size and select the system presenting the best features on the basis of two parameters, that is, cost and effectiveness. From an environmental point of view, this study allows highlighting the role of renewable energy in reducing gas emissions related to greenhouse effects. In addition, through a set of sensitivity analysis, it is found that the wind speed has more effects on the environmental and economic performances of grid-connected hybrid (photovoltaic-wind) power systems.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4182 ◽  
Author(s):  
Piotr F. Borowski

Along with economic development and development of power systems, new, more effective models of the energy market are sought. Traditional zonal models used on the electricity market have proved to be poorly adapted to new circumstances and phenomena occurring in the macroeconomic environment. The main aim of the research was to show the direction (including the nodal model and prosumer behavior) in which the energy market should develop in order to meet the state-of-the-art technical, ecological and social challenges. Therefore, with the new challenges, a new chapter has opened up on very interesting research for the electrical industry. There are new solutions for the development and modernization of models from the point of view of management and econometrics of the energy market, adapted to new challenges related to ecology, technology, and competition. This article presents the zone model with its imperfections and suggestions for its improvement and proposes a nodal model that may in the near future become a new model for the functioning of the electricity market in Europe.


2019 ◽  
Vol 15 (1) ◽  
pp. 45-53 ◽  
Author(s):  
A. Zhukov ◽  
N. Tomin ◽  
V. Kurbatsky ◽  
D. Sidorov ◽  
D. Panasetsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document