Long-term large scale human-robot interaction platform through immersive VR system - Development of RoboCup @Home Simulator-

Author(s):  
Tetsunari Inamura ◽  
Jeffrey Too Chuan Tan
Author(s):  
Tetsunari INAMURA ◽  
Jeffrey Too Chuan TAN ◽  
Yoshinobu HAGIWARA ◽  
Komei SUGIURA ◽  
Takayuki NAGAI ◽  
...  

2021 ◽  
Author(s):  
Lauren Dwyer

Anxiety has a lifetime prevalence of 31% of Canadians (Katzman et al. 2014). In Canada, psychological services are only covered by provincial health insurance if the psychologist is employed in the public sector; this means long wait times in the public system or expensive private coverage (Canadian Psychological Association). Currently, social robots and Socially Assistive Robots (SAR) are used in the treatment of elderly individuals in nursing homes, as well as children with autism (Feil-Seifer & Matarić, 2011; Tapus et al., 2012). The following MRP is the first step in a long-term project that will contend with the issues faced by individuals with anxiety using a combined communications, social robotics, and mental health approach to develop an anxiety specific socially assistive robot companion. The focus of this MRP is the development of a communication model that includes three core aspects of a social robot companion: Human-Robot Interaction (HRI), anxiety disorders, and technical design. The model I am developing will consist of a series of suggestions for the robot that could be implemented in a long-term study. The model will include suggestions towards the design, communication means, and technical requirements, as well as a model for evaluating the robot from a Human-Robot- Interaction perspective. This will be done through an evaluation of three robots, Sphero’s BB-8 App Enabled Droid, Aldebaran’s Nao, and the Spin Master Zoomer robot. Evaluation measures include modified versions of Shneiderman’s (1992) evaluation of human-factors goals, Feil-Seifer et al.’s (2007) SAR evaluative questions, prompts for the description of both the communication methods and the physical characteristics, and a record of the emotional response of the user when interacting with the robot.


2021 ◽  
Author(s):  
Lauren Dwyer

Anxiety has a lifetime prevalence of 31% of Canadians (Katzman et al. 2014). In Canada, psychological services are only covered by provincial health insurance if the psychologist is employed in the public sector; this means long wait times in the public system or expensive private coverage (Canadian Psychological Association). Currently, social robots and Socially Assistive Robots (SAR) are used in the treatment of elderly individuals in nursing homes, as well as children with autism (Feil-Seifer & Matarić, 2011; Tapus et al., 2012). The following MRP is the first step in a long-term project that will contend with the issues faced by individuals with anxiety using a combined communications, social robotics, and mental health approach to develop an anxiety specific socially assistive robot companion. The focus of this MRP is the development of a communication model that includes three core aspects of a social robot companion: Human-Robot Interaction (HRI), anxiety disorders, and technical design. The model I am developing will consist of a series of suggestions for the robot that could be implemented in a long-term study. The model will include suggestions towards the design, communication means, and technical requirements, as well as a model for evaluating the robot from a Human-Robot- Interaction perspective. This will be done through an evaluation of three robots, Sphero’s BB-8 App Enabled Droid, Aldebaran’s Nao, and the Spin Master Zoomer robot. Evaluation measures include modified versions of Shneiderman’s (1992) evaluation of human-factors goals, Feil-Seifer et al.’s (2007) SAR evaluative questions, prompts for the description of both the communication methods and the physical characteristics, and a record of the emotional response of the user when interacting with the robot.


Author(s):  
Joanne Pransky

Purpose The purpose of this paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned-entrepreneur regarding the evolution, commercialization and challenges of bringing a technological invention to market. Design/methodology/approach The interviewee is Dr Cory Kidd, an inventor, entrepreneur and leading practitioner in the field of human–robot interaction. Dr Kidd shares his 20-year journey of working at the intersection of healthcare and technology and how he applied innovative technologies toward solving large-scale consumer healthcare challenges. Findings Dr Kidd received his BS degree in Computer Science from the Georgia Institute of Technology and earned a National Science Foundation Graduate Research Fellow in Computer and Information Science & Engineering. Dr Kidd received his MS and PhD degrees at the MIT Media Lab in human–robot interaction. While there, he conducted studies that showed the psychological and clinical advantages of using a physical robot over screen-based interactions. While finishing his PhD in 2007, he founded his first company, Intuitive Automata, which created interactive coaches for weight loss. Though Intuitive Automata ceased operations in 2013, Dr Kidd harnessed his extensive knowledge of the healthcare business and the experiences from patient engagement and launched Catalia Health in 2014 with a new platform centered specifically around patient behavior change programs for chronic disease management. Originality/value Dr Kidd is a pioneer of social robotics and has developed groundbreaking technology for healthcare applications that combines artificial intelligence, psychology and medical best practices to deliver everyday care to patients who are managing chronic conditions. He holds patents, including one entitled Apparatus and Method for Assisting in Achieving Desired Behavior Patterns and in an Interactive Personal Health Promoting Robot. Dr Kidd was awarded the inaugural Wall Street Journal and Credit Suisse Technopreneur of the Year in 2010, which is meant to “honor the entry that best applies technology with the greatest potential for commercial success”. He is also the Director of Business Development for the nonprofit Silicon Valley Robotics and is an impact partner for Fresco Capital. He consults, mentors and serves as a Board Member and Advisor to several high-tech startups.


2016 ◽  
Vol 17 (3) ◽  
pp. 461-490 ◽  
Author(s):  
Maartje M. A. de Graaf ◽  
Somaya Ben Allouch ◽  
Jan A. G. M. van Dijk

Abstract This study aims to contribute to emerging human-robot interaction research by adding longitudinal findings to a limited number of long-term social robotics home studies. We placed 70 robots in users’ homes for a period of up to six months, and used questionnaires and interviews to collect data at six points during this period. Results indicate that users’ evaluations of the robot dropped initially, but later rose after the robot had been used for a longer period of time. This is congruent with the so-called mere-exposure effect, which shows an increasing positive evaluation of a novel stimulus once people become familiar with it. Before adoption, users focus on control beliefs showing that previous experiences with robots or other technologies allows to create a mental image of what having and using a robot in the home would entail. After adoption, users focus on utilitarian and hedonic attitudes showing that especially usefulness, social presence, enjoyment and attractiveness are important factors for long-term acceptance.


Author(s):  
Nikolaos Mavridis ◽  
Michael Petychakis ◽  
Alexandros Tsamakos ◽  
Panos Toulis ◽  
Shervin Emami ◽  
...  

AbstractThe overarching goal of the FaceBots project is to support the achievement of sustainable long-term human-robot relationships through the creation of robots with face recognition and natural language capabilities, which exploit and publish online information, and especially social information available on Facebook, and which achieve two significant novelties. The underlying experimental hypothesis is that such relationships can be significantly enhanced if the human and the robot are gradually creating a pool of episodic memories that they can co-refer to (“shared memories”), and if they are both embedded in a social web of other humans and robots they mutually know (“shared friends”). We present a description of system architecture, as well as important concrete results regarding face recognition and transferability of training, with training and testing sets coming from either one or a combination of two sources: an onboard camera which can provide sequences of images, as well as facebook-derived photos. Furthermore, early interaction-related results are presented, and evaluation methodologies as well as interesting extensions are discussed.


Author(s):  
Fotios Papadopoulos ◽  
Kerstin Dautenhahn ◽  
Wan Ching Ho

AbstractThis article describes the design and evaluation of AIBOStory - a novel, remote interactive story telling system that allows users to create and share common stories through an integrated, autonomous robot companion acting as a social mediator between two remotely located people. The behaviour of the robot was inspired by dog behaviour, including a simple computational memory model. AIBOStory has been designed to work alongside online video communication software and aims to enrich remote communication experiences over the internet. An initial pilot study evaluated the proposed system’s use and acceptance by the users. Five pairs of participants were exposed to the system, with the robot acting as a social mediator, and the results suggested an overall positive acceptance response. The main study involved long-term interactions of 20 participants using AIBOStory in order to study their preferences between two modes: using the game enhanced with an autonomous robot and a non-robot mode which did not use the robot. Instruments used in this study include multiple questionnaires from different communication sessions, demographic forms and logged data from the robots and the system. The data was analysed using quantitative and qualitative techniques to measure user preference and human-robot interaction. The statistical analysis suggests user preferences towards the robot mode.


Author(s):  
Bahar Irfan ◽  
Aditi Ramachandran ◽  
Samuel Spaulding ◽  
Dylan F. Glas ◽  
Iolanda Leite ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document