scholarly journals AIBOStory – Autonomous Robots supporting Interactive, Collaborative Story-telling

Author(s):  
Fotios Papadopoulos ◽  
Kerstin Dautenhahn ◽  
Wan Ching Ho

AbstractThis article describes the design and evaluation of AIBOStory - a novel, remote interactive story telling system that allows users to create and share common stories through an integrated, autonomous robot companion acting as a social mediator between two remotely located people. The behaviour of the robot was inspired by dog behaviour, including a simple computational memory model. AIBOStory has been designed to work alongside online video communication software and aims to enrich remote communication experiences over the internet. An initial pilot study evaluated the proposed system’s use and acceptance by the users. Five pairs of participants were exposed to the system, with the robot acting as a social mediator, and the results suggested an overall positive acceptance response. The main study involved long-term interactions of 20 participants using AIBOStory in order to study their preferences between two modes: using the game enhanced with an autonomous robot and a non-robot mode which did not use the robot. Instruments used in this study include multiple questionnaires from different communication sessions, demographic forms and logged data from the robots and the system. The data was analysed using quantitative and qualitative techniques to measure user preference and human-robot interaction. The statistical analysis suggests user preferences towards the robot mode.

Author(s):  
Akimul Prince ◽  
Biswanath Samanta

The paper presents a control approach based on vertebrate neuromodulation and its implementation on an autonomous robot platform. A simple neural network is used to model the neuromodulatory function for generating context based behavioral responses to sensory signals. The neural network incorporates three types of neurons — cholinergic and noradrenergic (ACh/NE) neurons for attention focusing and action selection, dopaminergic (DA) neurons for curiosity-seeking, and serotonergic (5-HT) neurons for risk aversion behavior. The implementation of the neuronal model on a relatively simple autonomous robot illustrates its interesting behavior adapting to changes in the environment. The integration of neuromodulation based robots in the study of human-robot interaction would be worth considering in future.


Robotica ◽  
2007 ◽  
Vol 25 (5) ◽  
pp. 521-527 ◽  
Author(s):  
Harsha Medicherla ◽  
Ali Sekmen

SUMMARYAn understanding of how humans and robots can successfully interact to accomplish specific tasks is crucial in creating more sophisticated robots that may eventually become an integral part of human societies. A social robot needs to be able to learn the preferences and capabilities of the people with whom it interacts so that it can adapt its behaviors for more efficient and friendly interaction. Advances in human– computer interaction technologies have been widely used in improving human–robot interaction (HRI). It is now possible to interact with robots via natural communication means such as speech. In this paper, an innovative approach for HRI via voice-controllable intelligent user interfaces is described. The design and implementation of such interfaces are described. The traditional approaches for human–robot user interface design are explained and the advantages of the proposed approach are presented. The designed intelligent user interface, which learns user preferences and capabilities in time, can be controlled with voice. The system was successfully implemented and tested on a Pioneer 3-AT mobile robot. 20 participants, who were assessed on spatial reasoning ability, directed the robot in spatial navigation tasks to evaluate the effectiveness of the voice control in HRI. Time to complete the task, number of steps, and errors were collected. Results indicated that spatial reasoning ability and voice-control were reliable predictors of efficiency of robot teleoperation. 75% of the subjects with high spatial reasoning ability preferred using voice-control over manual control. The effect of spatial reasoning ability in teleoperation with voice-control was lower compared to that of manual control.


10.5772/60416 ◽  
2015 ◽  
Vol 12 (5) ◽  
pp. 57 ◽  
Author(s):  
Ludovico Orlando Russo ◽  
Giuseppe Airò Farulla ◽  
Daniele Pianu ◽  
Alice Rita Salgarella ◽  
Marco Controzzi ◽  
...  

AI Magazine ◽  
2015 ◽  
Vol 36 (3) ◽  
pp. 107-112
Author(s):  
Adam B. Cohen ◽  
Sonia Chernova ◽  
James Giordano ◽  
Frank Guerin ◽  
Kris Hauser ◽  
...  

The AAAI 2014 Fall Symposium Series was held Thursday through Saturday, November 13–15, at the Westin Arlington Gateway in Arlington, Virginia adjacent to Washington, DC. The titles of the seven symposia were Artificial Intelligence for Human-Robot Interaction, Energy Market Prediction, Expanding the Boundaries of Health Informatics Using AI, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, Modeling Changing Perspectives: Reconceptualizing Sensorimotor Experiences, Natural Language Access to Big Data, and The Nature of Humans and Machines: A Multidisciplinary Discourse. The highlights of each symposium are presented in this report.


2021 ◽  
Author(s):  
Lauren Dwyer

Anxiety has a lifetime prevalence of 31% of Canadians (Katzman et al. 2014). In Canada, psychological services are only covered by provincial health insurance if the psychologist is employed in the public sector; this means long wait times in the public system or expensive private coverage (Canadian Psychological Association). Currently, social robots and Socially Assistive Robots (SAR) are used in the treatment of elderly individuals in nursing homes, as well as children with autism (Feil-Seifer & Matarić, 2011; Tapus et al., 2012). The following MRP is the first step in a long-term project that will contend with the issues faced by individuals with anxiety using a combined communications, social robotics, and mental health approach to develop an anxiety specific socially assistive robot companion. The focus of this MRP is the development of a communication model that includes three core aspects of a social robot companion: Human-Robot Interaction (HRI), anxiety disorders, and technical design. The model I am developing will consist of a series of suggestions for the robot that could be implemented in a long-term study. The model will include suggestions towards the design, communication means, and technical requirements, as well as a model for evaluating the robot from a Human-Robot- Interaction perspective. This will be done through an evaluation of three robots, Sphero’s BB-8 App Enabled Droid, Aldebaran’s Nao, and the Spin Master Zoomer robot. Evaluation measures include modified versions of Shneiderman’s (1992) evaluation of human-factors goals, Feil-Seifer et al.’s (2007) SAR evaluative questions, prompts for the description of both the communication methods and the physical characteristics, and a record of the emotional response of the user when interacting with the robot.


2021 ◽  
Author(s):  
Lauren Dwyer

Anxiety has a lifetime prevalence of 31% of Canadians (Katzman et al. 2014). In Canada, psychological services are only covered by provincial health insurance if the psychologist is employed in the public sector; this means long wait times in the public system or expensive private coverage (Canadian Psychological Association). Currently, social robots and Socially Assistive Robots (SAR) are used in the treatment of elderly individuals in nursing homes, as well as children with autism (Feil-Seifer & Matarić, 2011; Tapus et al., 2012). The following MRP is the first step in a long-term project that will contend with the issues faced by individuals with anxiety using a combined communications, social robotics, and mental health approach to develop an anxiety specific socially assistive robot companion. The focus of this MRP is the development of a communication model that includes three core aspects of a social robot companion: Human-Robot Interaction (HRI), anxiety disorders, and technical design. The model I am developing will consist of a series of suggestions for the robot that could be implemented in a long-term study. The model will include suggestions towards the design, communication means, and technical requirements, as well as a model for evaluating the robot from a Human-Robot- Interaction perspective. This will be done through an evaluation of three robots, Sphero’s BB-8 App Enabled Droid, Aldebaran’s Nao, and the Spin Master Zoomer robot. Evaluation measures include modified versions of Shneiderman’s (1992) evaluation of human-factors goals, Feil-Seifer et al.’s (2007) SAR evaluative questions, prompts for the description of both the communication methods and the physical characteristics, and a record of the emotional response of the user when interacting with the robot.


2016 ◽  
Vol 17 (3) ◽  
pp. 461-490 ◽  
Author(s):  
Maartje M. A. de Graaf ◽  
Somaya Ben Allouch ◽  
Jan A. G. M. van Dijk

Abstract This study aims to contribute to emerging human-robot interaction research by adding longitudinal findings to a limited number of long-term social robotics home studies. We placed 70 robots in users’ homes for a period of up to six months, and used questionnaires and interviews to collect data at six points during this period. Results indicate that users’ evaluations of the robot dropped initially, but later rose after the robot had been used for a longer period of time. This is congruent with the so-called mere-exposure effect, which shows an increasing positive evaluation of a novel stimulus once people become familiar with it. Before adoption, users focus on control beliefs showing that previous experiences with robots or other technologies allows to create a mental image of what having and using a robot in the home would entail. After adoption, users focus on utilitarian and hedonic attitudes showing that especially usefulness, social presence, enjoyment and attractiveness are important factors for long-term acceptance.


Sign in / Sign up

Export Citation Format

Share Document