Segmentation of Dwarf Rocks Based on Bayesian Hierarchical Mixture Model

Author(s):  
Yunxin Liang ◽  
Jiyu Wu ◽  
Chunxiang Li ◽  
Jincun Zhang ◽  
Biliang Zhong ◽  
...  
Signals ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 41-52
Author(s):  
Mahdi Rezapour ◽  
Khaled Ksaibati

Various techniques have been proposed in the literature to account for the observed and unobserved heterogeneity in the crash dataset. Those include techniques such as the finite mixture model (FMM), or hierarchical techniques. The FMM could provide a flexible framework by providing various distributions for various individual observations. However, the shortcoming of the standard FMM is that it cannot account for the heterogeneity in a single model’s structure, and the data needs to be disaggregated to its resultant subsamples. That would result in a loss of information. On the other hand, a second plausible approach is to use a hierarchical technique to account for the data heterogeneities, being based on various explanatory variables, and based on engineering intuition. In the context of traffic safety, while some researchers, for instance, considered the seasonality, some others considered highway systems or even genders. However, a question might arise: are the same observations within a same hierarchy homogenous? Are all the observations within different clusters heterogeneous? Additionally, how about other variables? Although the results in the literature highlighted accounting for the structure of the dataset would result in an acceptable interclass correlation (ICC), and also result in a significant improvement in terms of reduction in the deviance information criteria (DIC), there is no justification why to use those specific hierarchies and reject others. A more reasonable approach is to let the algorithm come up with the best distributions based on the provided parameters and accommodate observations to the related mixtures. In that approach those observations that belong to various subjective hierarchies, e.g., winter versus summer, but found to be similar would be set in a similar cluster. That is why we proposed this methodology to implement an objective hierarchy of the FMM to be used for the hierarchical technique. Here, due to the label switching problem of the FMM in the context of Bayesian, the FMM first conducted in the context of maximum likelihood estimates, and then assigned observations were used for the final analysis. The results of the DIC highlighted a significant improvement in the model fit compared with a subjective assigned hierarchy based on highway system. Additionally, although the subjective model resulted in a very low ICC due to so much heterogeneity in the dataset, the implemented methodology resulted in an acceptable ICC (0.3), justifying the use of hierarchy. The Bayesian hierarchical finite mixture model (BHFMM) is one of earliest application in traffic safety studies. The findings of this study have important implications for the future studies to account for a higher heterogeneity of the crash dataset based on the distance of observations to each cluster.


Author(s):  
Alex Lewin ◽  
Natalia Bochkina ◽  
Sylvia Richardson

We present a Bayesian hierarchical model for detecting differentially expressed genes using a mixture prior on the parameters representing differential effects. We formulate an easily interpretable 3-component mixture to classify genes as over-expressed, under-expressed and non-differentially expressed, and model gene variances as exchangeable to allow for variability between genes. We show how the proportion of differentially expressed genes, and the mixture parameters, can be estimated in a fully Bayesian way, extending previous approaches where this proportion was fixed and empirically estimated. Good estimates of the false discovery rates are also obtained.Different parametric families for the mixture components can lead to quite different classifications of genes for a given data set. Using Affymetrix data from a knock out and wildtype mice experiment, we show how predictive model checks can be used to guide the choice between possible mixture priors. These checks show that extending the mixture model to allow extra variability around zero instead of the usual point mass null fits the data better.A software package for R is available.


2011 ◽  
Vol 5 (S9) ◽  
Author(s):  
Julio S Bueno Filho ◽  
Gota Morota ◽  
Quoc Tran ◽  
Matthew J Maenner ◽  
Lina M Vera-Cala ◽  
...  

Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 288
Author(s):  
Mahdi Rezapour ◽  
Khaled Ksaibati

The Wyoming Department of Transportation (WYDOT) initiated a project to optimize the heights of barriers that are not satisfying the barrier design criteria, while prioritizing them based on an ability to achieve higher monetary benefits. The equivalent property damage only (EPDO) was used in this study to account for both aspects of crash frequency and severity. Data of this type are known to have overdispersion, that is having a variance greater than the mean. Thus, a negative binomial model was implemented to address the over-dispersion issue of the dataset. Another challenge of the dataset used in this study was the heterogeneity of the dataset. The data heterogeneity resulted from various factors such as data being aggregated across two highway systems, and the presence of two barrier types in the whole state. Thus, it is not practical to assign a subjective hierarchy such as a highway system or barrier types to address the issue of severe heterogeneity in the dataset. Under these conditions, a finite mixture model (FMM) was implemented to find a best distribution parameter to characterize the observations. With this technique, after the optimum number of mixtures was identified, those clusters were assigned to various observations. However, previous studies mostly employed just the finite mixture model (FMM), with various distributions, to account for unobserved heterogeneity. The problem with the FMM approach is that it results in a loss of information: for instance, it would come up with N number of equations, where each result would use only part of the whole dataset. On the other hand, some studies used a subjective hierarchy to account for the heterogeneity in the dataset, such as the effect of seasonality or highway system; however, those subjective hierarchies might not account for the optimum heterogeneity in the dataset. Thus, we implement a new methodology, the Bayesian Hierarchical Finite Mixture (BHFMM) to employ the FMM without losing information, while also accounting for the heterogeneity in the dataset, by considering objective and unbiased hierarchies. As the Bayesian technique has the shortcoming of labeling the observations due to label switching; the FMM parameters were estimated by maximum likelihood technique. Results of the identified model were converted to an equation for implementation of machine learning techniques. The heights were optimized to an optimal value and the EPDO was predicted based on the changes. The results of the cost–benefit analysis indicated that after spending about 4 million dollars, the WYDOT would not only recover the expenses, but could also expect to save more than $4 million additional dollars through traffic barrier crash reduction.


Sign in / Sign up

Export Citation Format

Share Document