A novel learning and prediction Bayesian hierarchical clustering-Dirichlet mixture model for effective data mining

2020 ◽  
Vol 11 (3) ◽  
pp. 251
Author(s):  
C. Krubakaran ◽  
K. Venkatachalapathy
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2450
Author(s):  
Fahd Alharithi ◽  
Ahmed Almulihi ◽  
Sami Bourouis ◽  
Roobaea Alroobaea ◽  
Nizar Bouguila

In this paper, we propose a novel hybrid discriminative learning approach based on shifted-scaled Dirichlet mixture model (SSDMM) and Support Vector Machines (SVMs) to address some challenging problems of medical data categorization and recognition. The main goal is to capture accurately the intrinsic nature of biomedical images by considering the desirable properties of both generative and discriminative models. To achieve this objective, we propose to derive new data-based SVM kernels generated from the developed mixture model SSDMM. The proposed approach includes the following steps: the extraction of robust local descriptors, the learning of the developed mixture model via the expectation–maximization (EM) algorithm, and finally the building of three SVM kernels for data categorization and classification. The potential of the implemented framework is illustrated through two challenging problems that concern the categorization of retinal images into normal or diabetic cases and the recognition of lung diseases in chest X-rays (CXR) images. The obtained results demonstrate the merits of our hybrid approach as compared to other methods.


2002 ◽  
Vol 38 (4) ◽  
pp. 487-500 ◽  
Author(s):  
Claudio Conversano ◽  
Roberta Siciliano ◽  
Francesco Mola
Keyword(s):  

2021 ◽  
Vol 8 (10) ◽  
pp. 43-50
Author(s):  
Truong et al. ◽  

Clustering is a fundamental technique in data mining and machine learning. Recently, many researchers are interested in the problem of clustering categorical data and several new approaches have been proposed. One of the successful and pioneering clustering algorithms is the Minimum-Minimum Roughness algorithm (MMR) which is a top-down hierarchical clustering algorithm and can handle the uncertainty in clustering categorical data. However, MMR tends to choose the category with less value leaf node with more objects, leading to undesirable clustering results. To overcome such shortcomings, this paper proposes an improved version of the MMR algorithm for clustering categorical data, called IMMR (Improved Minimum-Minimum Roughness). Experimental results on actual data sets taken from UCI show that the IMMR algorithm outperforms MMR in clustering categorical data.


Author(s):  
Yunxin Liang ◽  
Jiyu Wu ◽  
Chunxiang Li ◽  
Jincun Zhang ◽  
Biliang Zhong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document