Physical Insights on Junction Controllability for Improved Performance of Planar Trigate Tunnel FET as Capacitorless Dynamic Memory

Author(s):  
Nupur Navlakha ◽  
Abhinav Kranti
Author(s):  
Pi-Sheng Deng

Genetic algorithms (GAs) are stochastic search techniques based on the concepts of natural population genetics for exploring a huge solution space in identifying optimal or near optimal solutions (Davis, 1991)(Holland, 1992)(Reeves & Rowe, 2003), and are more likely able to avoid the local optima problem than traditional gradient based hill-climbing optimization techniques when solving complex problems. In essence, GAs are a type of reinforcement learning technique (Grefenstette, 1993), which are able to improve solutions gradually on the basis of the previous solutions. GAs are characterized by their abilities to combine candidate solutions to exploit efficiently a promising area in the solution space while stochastically exploring new search regions with expected improved performance. Many successful applications of this technique are frequently reported across various kinds of industries and businesses, including function optimization (Ballester & Carter, 2004)(Richter & Paxton, 2005), financial risk and portfolio management (Shin & Han, 1999), market trading (Kean, 1995), machine vision and pattern recognition (Vafaie & De Jong, 1998), document retrieval (Gordon, 1988), network topological design (Pierre & Legault, 1998)(Arabas & Kozdrowski, 2001), job shop scheduling (Özdamar, 1999), and optimization for operating system’s dynamic memory configuration (Del Rosso, 2006), among others. In this research we introduce the concept and components of GAs, and then apply the GA technique to the modeling of the batch selection problem of flexible manufacturing systems (FMSs). The model developed in this paper serves as the basis for the experiment in Deng (2007).


2011 ◽  
Vol 58 (6) ◽  
pp. 1649-1654 ◽  
Author(s):  
Costin Anghel ◽  
Hraziia ◽  
Anju Gupta ◽  
Amara Amara ◽  
Andrei Vladimirescu

2020 ◽  
Vol 34 (01) ◽  
pp. 557-564
Author(s):  
Siddharth Biswal ◽  
Cao Xiao ◽  
Lucas M. Glass ◽  
Elizabeth Milkovits ◽  
Jimeng Sun

Massive electronic health records (EHRs) enable the success of learning accurate patient representations to support various predictive health applications. In contrast, doctor representation was not well studied despite that doctors play pivotal roles in healthcare. How to construct the right doctor representations? How to use doctor representation to solve important health analytic problems? In this work, we study the problem on clinical trial recruitment, which is about identifying the right doctors to help conduct the trials based on the trial description and patient EHR data of those doctors. We propose Doctor2Vec which simultaneously learns 1) doctor representations from EHR data and 2) trial representations from the description and categorical information about the trials. In particular, Doctor2Vec utilizes a dynamic memory network where the doctor's experience with patients are stored in the memory bank and the network will dynamically assign weights based on the trial representation via an attention mechanism. Validated on large real-world trials and EHR data including 2,609 trials, 25K doctors and 430K patients, Doctor2Vec demonstrated improved performance over the best baseline by up to 8.7% in PR-AUC. We also demonstrated that the Doctor2Vec embedding can be transferred to benefit data insufficiency settings including trial recruitment in less populated/newly explored country with 13.7% improvement or for rare diseases with 8.1% improvement in PR-AUC.


2015 ◽  
Vol 82 ◽  
pp. 430-437 ◽  
Author(s):  
Mamidala Saketh Ram ◽  
Dawit Burusie Abdi

Author(s):  
Gertrude. F. Rempfer

Optimum performance in electron and ion imaging instruments, such as electron microscopes and probe-forming instruments, in most cases depends on a compromise either between imaging errors due to spherical and chromatic aberrations and the diffraction error or between the imaging errors and the current in the image. These compromises result in the use of very small angular apertures. Reducing the spherical and chromatic aberration coefficients would permit the use of larger apertures with resulting improved performance, granted that other problems such as incorrect operation of the instrument or spurious disturbances do not interfere. One approach to correcting aberrations which has been investigated extensively is through the use of multipole electric and magnetic fields. Another approach involves the use of foil windows. However, a practical system for correcting spherical and chromatic aberration is not yet available.Our approach to correction of spherical and chromatic aberration makes use of an electrostatic electron mirror. Early studies of the properties of electron mirrors were done by Recknagel. More recently my colleagues and I have studied the properties of the hyperbolic electron mirror as a function of the ratio of accelerating voltage to mirror voltage. The spherical and chromatic aberration coefficients of the mirror are of opposite sign (overcorrected) from those of electron lenses (undercorrected). This important property invites one to find a way to incorporate a correcting mirror in an electron microscope. Unfortunately, the parts of the beam heading toward and away from the mirror must be separated. A transverse magnetic field can separate the beams, but in general the deflection aberrations degrade the image. The key to avoiding the detrimental effects of deflection aberrations is to have deflections take place at image planes. Our separating system is shown in Fig. 1. Deflections take place at the separating magnet and also at two additional magnetic deflectors. The uncorrected magnified image formed by the objective lens is focused in the first deflector, and relay lenses transfer the image to the separating magnet. The interface lens and the hyperbolic mirror acting in zoom fashion return the corrected image to the separating magnet, and the second set of relay lenses transfers the image to the final deflector, where the beam is deflected onto the projection axis.


Sign in / Sign up

Export Citation Format

Share Document