Detection of rail faults using morphological feature extraction based image processing

Author(s):  
Canan Tastimur ◽  
Erhan Akin ◽  
Mehmet Karakose ◽  
Ilhan Aydin
2021 ◽  
Vol 5 (2) ◽  
pp. 1-7
Author(s):  
Sun Y

In economic construction, there are many large and important machinery and equipment. Some equipment will continue to work in a harsh working environment, so many and various failures will occur. Rolling bearings are one of the widely used parts in rotating machinery. They are generally composed of inner ring, outer ring, rolling element and holding. The frame is composed of four parts, the failure of the bearing is particularly important, and its safe operation has a vital impact on the entire equipment, Feature extraction is the key link in the subsequent identification of fault types, Although feature extraction in the time domain and frequency domain is effective, it is also necessary to find new feature extraction methods in new areas. On the basis of the snowflake image obtained by using the principle of SDP(Symmetrized Dot Pattern), a method for extracting fault features of rolling bearings based on image processing is proposed, and the snowflake standard map for different working conditions is constructed. The number of snowflake images under different working conditions is different. The binary matrix of the test image is compared with it, and then classified and identified. Finally, the algorithm is validated, and the ideal result is obtained to verify its rationality and effectiveness.


Over the last decades, digital image processing based fire and smoke detection have been improving steadily to provide a more accurate detection results in the area of surveillance security system. Detection of the fire and smoke from the surveillance videos is very challenging task due to the complex structural properties of the video frames or images and need improvisation in the existing work by utilization of feature selection or optimization approach to select on optimal feature according to the fire and smoke. A research based on the combination of various feature extraction techniques with feature selection approach for fire and smoke detection has been presented in this paper. In this research, we develop Fire and Smoke Detection (FSD) system using digital image processing with the concept of Speed up Robust Feature (SURF) along with the Intelligent Water Drops (IWD) as a feature selection and optimization algorithm. Here, Artificial Neural Network (ANN) is used as an Artificial Intelligence (AI) technique with that helps to select a set of optimal feature from the extracted by SURF descriptor from the video frames. By utilizing the concept of optimized ANN, the accuracy of proposed FSD system is increases in terms of detection accuracy and with minimum percentage of error. At last, the performance of the FSD system is calculated to validate the model and this shows that it is possible to use IWD with SURF as a feature extraction technique in order to detect the fire or smoke form the surveillance video with minimum error rate and the simulation results clearly show the effectiveness of proposed FSD system


Sign in / Sign up

Export Citation Format

Share Document