A compact CPW-fed wide band microstrip antenna design for mobile applications

Author(s):  
Mehmet Abbak ◽  
Agah Oktay Ertay ◽  
Can Suer
2011 ◽  
Vol 5 (11) ◽  
pp. 1343 ◽  
Author(s):  
P. Baccarelli ◽  
P. Burghignoli ◽  
F. Frezza ◽  
A. Galli ◽  
P. Lampariello ◽  
...  

2021 ◽  
Author(s):  
Salvador Ricardo Meneses Gonzalez ◽  
Rita Trinidad Rodriguez Marquez ◽  
Roberto Linares ◽  
Miranda

Author(s):  
Yu.S. Blinova ◽  
V.E. Drach ◽  
A.A. Litvinenko ◽  
A.V. Rodionov

A key component of any phased array or radar sensor is its antenna. For ultra wide band systems usually four types of antenna are being used: microstrip, tapered slot, sinuous and Yagi-Uda. The microstrip antenna generates two main lobes, which makes it a bidirectional antenna, like the tapered slot, sinuous, or Yagi-Uda antennae. Several efforts had been made to shift the bidirectional character of the microstrip antenna into unidirectional by placing a ground plate to absorb the undesirable main lobe. These efforts successfully eliminated the undesirable main lobe; however, side effects were introduced along the way, such as the remaining main lobe’s direction became frequency dependent. On the other hand, the sinuous antenna design is very complex when compared with the tapered slot antenna, involving multiple curvatures and angles. The Yagi–Uda antenna design, although less complex than the sinuous, still requires multiple segments and is more complicated than the tapered slot antenna. This study examined and analyzed primary parameters regarding their individual impact on linear tapered slot antenna design. The result is a set of recommendations for linear tapered slot antenna design to operate within the UWB frequency range. Unlike previous studies, which only focused on a certain set of these parameters, this paper provides a comprehensive recommendation for the parameters, which should result in a functional tapered slot antenna design. This set of recommendation can also serve as a base for further optimization, if desired. When used for optimization, the results from this study can guide the direction of changes when multiple parameters need to be adjusted simultaneously. Furthermore, this set of recommendations can be applied to other tapered slot antenna designs, as they all share, although are not defined completely, by these investigated parameters.


Sign in / Sign up

Export Citation Format

Share Document