Quantum capacitance of bilayer graphene

Author(s):  
George S Kliros
Carbon ◽  
2022 ◽  
Vol 188 ◽  
pp. 545
Author(s):  
Guang-yu CUI ◽  
Zong-lin YI ◽  
Fang-yuan SU ◽  
Cheng-meng CHEN ◽  
Pei-de HAN

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hediyeh Karimi ◽  
Rubiyah Yusof ◽  
Mohammad Taghi Ahmadi ◽  
Mehdi Saeidmanesh ◽  
Meisam Rahmani ◽  
...  

Quantum capacitance of electrolyte-gated bilayer graphene field-effect transistors is investigated in this paper. Bilayer graphene has received huge attention due to the fact that an energy gap could be opened by chemical doping or by applying external perpendicular electric field. So, this extraordinary property can be exploited to use bilayer graphene as a channel in electrolyte-gated field-effect transistors. The quantum capacitance of bi-layer graphene with an equivalent circuit is presented, and also based on the analytical model a numerical solution is reported. We begin by modeling the DOS, followed by carrier concentration as a functionVin degenerate and nondegenerate regimes. To further confirm this viewpoint, the presented analytical model is compared with experimental data, and acceptable agreement is reported.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hatef Sadeghi ◽  
Daniel T. H. Lai ◽  
Jean-Michel Redoute ◽  
Aladin Zayegh

Our focus in this study is on characterizing the capacitance voltage (C-V) behavior of Bernal stacking bilayer graphene (BG) and trilayer graphene (TG) as the channel of FET devices. The analytical models of quantum capacitance (QC) of BG and TG are presented. Although QC is smaller than the classic capacitance in conventional devices, its contribution to the total metal oxide semiconductor capacitor in graphene-based FET devices becomes significant in the nanoscale. Our calculation shows that QC increases with gate voltage in both BG and TG and decreases with temperature with some fluctuations. However, in bilayer graphene the fluctuation is higher due to its tunable band structure with external electric fields. In similar temperature and size, QC in metal oxide BG is higher than metal oxide TG configuration. Moreover, in both BG and TG, total capacitance is more affected by classic capacitance as the distance between gate electrode and channel increases. However, QC is more dominant when the channel becomes thinner into the nanoscale, and therefore we mostly deal with quantum capacitance in top gate in contrast with bottom gate that the classic capacitance is dominant.


2021 ◽  
Vol 36 (6) ◽  
pp. 1062-1070
Author(s):  
Guang-yu Cui ◽  
Zong-lin Yi ◽  
Fang-yuan Su ◽  
Cheng-meng Chen ◽  
Pei-de Han

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 658
Author(s):  
Michael M. Slepchenkov ◽  
Pavel V. Barkov ◽  
Olga E. Glukhova

Using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, we studied the effect of axial stretching on the electrical conductivity and quantum capacitance of hybrid films formed by AB-stacked bilayer graphene and horizontally oriented single-walled carbon nanotubes (SWCNTs) with indices chirality (12,6). The paper discusses several topological models of hybrid graphene/SWCNT(12, 6) films, which differ in the width of the graphene layer in the supercell and in the value of the shift between the graphene layers. It is shown that axial stretching has a different effect on the electrical conductivity and quantum capacity of the hybrid graphene/SWCNT (12, 6) film depending on the width of the graphene layer. For a topological model with a minimum width of the graphene layer (2 hexagons) under a 10% stretching strain, the transformation of bilayer graphene from planar to wave-like structures is characteristic. This transformation is accompanied by the appearance of the effect of anisotropy of electrical conductivity and a sharp decrease in the maximum of quantum capacitance. For a topological model with a graphene layer width of 4 hexagons, axial stretching, on the contrary, leads to a decrease in the effect of anisotropy of electrical conductivity and insignificant changes in the quantum capacitance. Based on the obtained results, the prospects for using hybrid graphene/SWCNT(12, 6) films as a material for creating flexible electrodes of supercapacitors are predicted.


Sign in / Sign up

Export Citation Format

Share Document