capacitance effect
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 41)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Sumi Lee ◽  
Yejoo Choi ◽  
Sang Min Won ◽  
Donghee Son ◽  
Hyoung Won Baac ◽  
...  

Abstract Junctionless complementary field effect transistor (JL-CFET) is an emerging device that needs a small layout area and low fabrication cost. However, in order for the JL-CFET to be adopted for low power applications, two main constraints need to be overcome: (1) a high work function of metal gate and (2) a low drain current. In this work, an optimal device design is proposed to overcome those problems, by analyzing various performance metrics, such as on-state drive current, subthreshold swing, drain induced barrier lowering, propagation delay time, and ring oscillator’s oscillation frequency, which are extracted from various structures of JL-CFET. In addition, the negative capacitance effect in JL-CFET is examined to address the limit from device structures.


Author(s):  
Peng Luo ◽  
Sankara Narayanan Ekkanath Madathil ◽  
wataru saito ◽  
Shin-ichi NISHIZAWA

Abstract In this paper, the turn-on characteristics of 1.2-kV Trench IGBT (TIGBT) and Trench Clustered IGBT (TCIGBT) are investigated through TCAD simulations and experiments. TCIGBT shows much lower turn-on energy loss (Eon) due to higher current gain than an equivalent TIGBT and the negative gate capacitance effect is effectively suppressed in the TCIGBT by its self-clamping feature and PMOS action. In addition, the impact of 3-D scaling rules on the turn-on performance of TIGBT and TCIGBT is analyzed in detail. Simulation results show that scaling rules result in a significant reduction of Eon in both TIGBT and TCIGBT. Furthermore, the experimental results indicate that TCIGBT technology is well suited for high current density operations with low power losses. Compared to the state-of-the-art IGBT technology, an 18 % reduction of total power losses can be achieved by the TCIGBT operated at 300 A/cm2 and 175 °C.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2124
Author(s):  
Lucian Pintilie ◽  
Georgia Andra Boni ◽  
Cristina Florentina Chirila ◽  
Viorica Stancu ◽  
Lucian Trupina ◽  
...  

Polarization switching in ferroelectric films is exploited in many applications, such as non-volatile memories and negative capacitance field affect transistors. This can be inhomogeneous or homogeneous, depending on if ferroelectric domains are forming or not during the switching process. The relation between the polarization switching, the structural quality of the films and the negative capacitance was not studied in depth. Here, Pb(Zr0.2Ti0.8)O3 (PZT) layers were deposited by pulse laser deposition (PLD) and sol-gel (SG) on single crystal SrTiO3 (STO) and Si substrates, respectively. The structural quality was analyzed by X-ray diffraction and transmission electron microscopy, while the electric properties were investigated by performing hysteresis, dynamic dielectric measurements, and piezo-electric force microscopy analysis. It was found that the PZT layers grown by PLD on SRO/STO substrates are epitaxial while the layers deposited by SG on Pt/Si are polycrystalline. The polarization value decreases as the structure changes from epitaxial to polycrystalline, as well as the magnitude of the leakage current and of the differential negative capacitance, while the switching changes from homogeneous to inhomogeneous. The results are explained by the compensation rate of the depolarization field during the switching process, which is much faster in epitaxial films than in polycrystalline ones.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehdi Habibi ◽  
Yunus Dawji ◽  
Ebrahim Ghafar-Zadeh ◽  
Sebastian Magierowski

Purpose Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to enabling full human genome assembly. This evolution has been powered not only by improvements in the sensors themselves, but also in the assisting microelectronic CMOS readout circuitry closely interfaced to them. In this light, this paper aims to review established and emerging nanopore-based sensing modalities considered for DNA sequencing and CMOS microelectronic methods currently being used. Design/methodology/approach Readout and amplifier circuits, which are potentially appropriate for conditioning and conversion of nanopore signals for downstream processing, are studied. Furthermore, arrayed CMOS readout implementations are focused on and the relevant status of the nanopore sensor technology is reviewed as well. Findings Ion channel nanopore devices have unique properties compared with other electrochemical cells. Currently biological nanopores are the only variants reported which can be used for actual DNA sequencing. The translocation rate of DNA through such pores, the current range at which these cells operate on and the cell capacitance effect, all impose the necessity of using low-noise circuits in the process of signal detection. The requirement of using in-pixel low-noise circuits in turn tends to impose challenges in the implementation of large size arrays. Originality/value The study presents an overview on the readout circuits used for signal acquisition in electrochemical cell arrays and investigates the specific requirements necessary for implementation of nanopore-type electrochemical cell amplifiers and their associated readout electronics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leilei Qiao ◽  
Cheng Song ◽  
Yiming Sun ◽  
Muhammad Umer Fayaz ◽  
Tianqi Lu ◽  
...  

AbstractNegative capacitance effect in ferroelectric materials provides a solution to the energy dissipation problem induced by Boltzmann distribution of electrons in conventional electronics. Here, we discover that besides ferroelectrics, the antiferroelectrics based on Landau switches also have intrinsic negative capacitance effect. We report both the static and transient negative capacitance effect in antiferroelectric PbZrO3 films and reveal its possible physical origin. The capacitance of the capacitor of the PbZrO3 and paraelectric heterostructure is demonstrated to be larger than that of the isolated paraelectric capacitor at room temperature, indicating the existence of the static negative capacitance. The opposite variation trends of the voltage and charge transients in a circuit of the PbZrO3 capacitor in series with an external resistor demonstrate the existence of transient negative capacitance effect. Strikingly, four negative capacitance effects are observed in the antiferroelectric system during one cycle scan of voltage pulses, different from the ferroelectric counterpart with two negative capacitance effects. The polarization vector mapping, electric field and free energy analysis reveal the rich local regions of negative capacitance effect with the negative dP/dE and (δ2G)⁄(δD2), producing stronger negative capacitance effect. The observation of negative capacitance effect in antiferroelectric films significantly extends the range of its potential application and reduces the power dissipation further.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muniyandi Muneeswaran ◽  
Ali Akbari-Fakhrabadi ◽  
Miguel Angel Gracia-Pinilla ◽  
Juliano C. Denardin ◽  
Nambi Venkatesan Giridharan

AbstractIn this study, (1 − x) BFO-xCFO (CFO, x = 0.00, 0.05, 0.10 and 0.30) ceramics were synthesized by a solid-state reaction method; their compositions were driven by structural, microstructural, vibrational, electrical, magnetic properties; their enhanced magneto capacitance (MC) effect have also been carried out. Reitveld refinement studies of X-ray diffraction data shows composition-driven structural phase transformation from rhombohedral (R3c) to tetragonal (P4mm). Two phonon scattering Raman modes were observed for the higher wavenumber which supports the crystal structural transition in the BFO-CFO. Ferroelectric polarization shows that the polarization increased with increasing CFO concentration, which describes the changes of the polar symmetry of the crystal structure from rhombohedral (R3c) to tetragonal (P4mm). In Further, the maximum efficiency of energy density (η = 68.65%), reversible energy density of 0.138 J/cm3 and the strong magneto capacitance was observed in 0.9BFO-0.1CFO, which belongs to the morphotropic phase boundary (MPB) region near to the BiFeO3-rich region. The magnetic response analysis has shown, the saturation magnetization (Ms) values of 83 emu/gm and 139 emu/gm for pure CFO and 0.7BFO-0.3CFO composite, respectively, and their magnetic behaviours were also confirmed with Arrott–Belov–Kouvel (ABK) plot.


Sign in / Sign up

Export Citation Format

Share Document