scholarly journals Outage performance of cooperative amplify-and-forward OFDM systems with nonlinear power amplifiers

Author(s):  
C. Alexandre ◽  
R. Fernandes
Author(s):  
R. Rajesh ◽  
P. G. S. Velmurugan ◽  
S. J. Thiruvengadam ◽  
P. S. Mallick

In this paper, a bidirectional full-duplex amplify- and-forward (AF) relay network with multiple antennas at source nodes is proposed. Assuming that the channel state information is known at the source nodes, transmit antenna selection and maximal ratio combining (MRC) are employed when source nodes transmit information to the relay node and receive information from the relay node respectively, in order to improve the overall signal-to-interference plus noise ratio (SINR). Analytical expressions are derived for tight upper bound SINR at the relay node and source nodes upon reception. Further, losed form expressions are also derived for end-to-end outage probability of the proposed bidirectional full-duplex AF relay network in the Nakagami-m fading channel environment. Although self-interference at the relay node limits the performance of the full-duplex network, the outage performance of the proposed network is better than that of conventional bidirectional full-duplex and half-duplex AF relay networks, due to the selection diversity gain in TAS and diversity and array gain in MRC.


2014 ◽  
Vol 556-562 ◽  
pp. 4530-4535
Author(s):  
Shi He ◽  
Bing Gao ◽  
Zhang Jun Fan

In this paper, we investigate the outage performance of a multiuser two-way relaying system over Nakagami-m fading channels. In particular, we consider the amplify-and-forward (AF) relay system with beamforming at the base station. Furthermore, the base station and mobile users have asymmetric traffic requirements. We fist derive a tight lower bound for the outage probability (OP). Moreover, the asymptotic outage probability expression is derived to shed light on the system's diversity order. Finally, Monte Carlo simulations are conducted to verify the analytical results.


Sign in / Sign up

Export Citation Format

Share Document