scholarly journals Analysis of Malware Propagation in Twitter

Author(s):  
Ameya Sanzgiri ◽  
Andrew Hughes ◽  
Shambhu Upadhyaya
Keyword(s):  
Author(s):  
Satya Ranjan Biswal ◽  
Santosh Kumar Swain

: Security is one of the important concern in both types of the network. The network may be wired or wireless. In case of wireless network security provisioning is more difficult in comparison to wired network. Wireless Sensor Network (WSN) is also a type of wireless network. And due to resource constraints WSN is vulnerable against malware attacks. Initially, the malware (virus, worm, malicious code, etc.) targets a single node of WSN for attack. When a node of WSN gets infected then automatically start to spread in the network. If nodes are strongly correlated the malware spreads quickly in the network. On the other hand, if nodes are weakly correlated the speed of malware spread is slow. A mathematical model is proposed for the study of malware propagation dynamics in WSN with combination of spatial correlation and epidemic theory. This model is based on epidemic theory with spatial correlation. The proposed model is Susceptible-Exposed-Infectious-Recover-Dead (SEIRD) with spatial correlation. We deduced the expression of basic reproduction number. It helps in the study of malware propagation dynamics in WSN. The stability analysis of the network has been investigated through proposed model. This model also helps in reduction of redundant information and saving of sensor nodes’ energy in WSN. The theoretical investigation verified by simulation results. A spatial correlation based epidemic model has been formulated for the study of dynamic behaviour of malware attacks in WSN.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4873
Author(s):  
Biao Xu ◽  
Minyan Lu ◽  
Hong Zhang ◽  
Cong Pan

A wireless sensor network (WSN) is a group of sensors connected with a wireless communications infrastructure designed to monitor and send collected data to the primary server. The WSN is the cornerstone of the Internet of Things (IoT) and Industry 4.0. Robustness is an essential characteristic of WSN that enables reliable functionalities to end customers. However, existing approaches primarily focus on component reliability and malware propagation, while the robustness and security of cascading failures between the physical domain and the information domain are usually ignored. This paper proposes a cross-domain agent-based model to analyze the connectivity robustness of a system in the malware propagation process. The agent characteristics and transition rules are also described in detail. To verify the practicality of the model, three scenarios based on different network topologies are proposed. Finally, the robustness of the scenarios and the topologies are discussed.


Sign in / Sign up

Export Citation Format

Share Document