Stochastic modelling of pavement roughness

Author(s):  
J.J. Zhu ◽  
Wenli Zhu
1998 ◽  
Vol 37 (1) ◽  
pp. 179-185
Author(s):  
Morten Grum

On evaluating the present or future state of integrated urban water systems, sewer drainage models, with rainfall as primary input, are often used to calculate the expected return periods of given detrimental acute pollution events and the uncertainty thereof. The model studied in the present paper incorporates notions of physical theory in a stochastic model of water level and particulate chemical oxygen demand (COD) at the overflow point of a Dutch combined sewer system. A stochastic model based on physical mechanisms has been formulated in continuous time. The extended Kalman filter has been used in conjunction with a maximum likelihood criteria and a non-linear state space formulation to decompose the error term into system noise terms and measurement errors. The bias generally obtained in deterministic modelling, by invariably and often inappropriately assuming all error to result from measurement inaccuracies, is thus avoided. Continuous time stochastic modelling incorporating physical, chemical and biological theory presents a possible modelling alternative. These preliminary results suggest that further work is needed in order to fully appreciate the method's potential and limitations in the field of urban runoff pollution modelling.


1992 ◽  
Vol 57 (10) ◽  
pp. 2100-2112 ◽  
Author(s):  
Vladimír Kudrna ◽  
Pavel Hasal ◽  
Andrzej Rochowiecki

A process of segregation of two distinct fractions of solid particles in a rotating horizontal drum mixer was described by stochastic model assuming the segregation to be a diffusion process with varying diffusion coefficient. The model is based on description of motion of particles inside the mixer by means of a stochastic differential equation. Results of stochastic modelling were compared to the solution of the corresponding Kolmogorov equation and to results of earlier carried out experiments.


Author(s):  
Qingwen Zhou ◽  
Egemen Okte ◽  
Imad L. Al-Qadi

Transportation agencies should measure pavement performance to appropriately strategize road preservation, maintenance, and rehabilitation activities. The international roughness index (IRI), which is a means to quantify pavement roughness, is a primary performance indicator. Many attempts have been made to correlate pavement roughness to other pavement performance parameters. Most existing correlations, however, are based on traditional statistical regression, which requires a hypothesis for the data. In this study, a novel approach was developed to predict asphalt concrete (AC) pavement IRI, utilizing datasets extracted from the Long-Term Pavement Performance (LTPP) database. IRI prediction is categorized by two models: (i) IRI progression over the pavement’s service life without maintenance/rehabilitation and (ii) the drop in IRI after maintenance. The first model utilizes the recurrent neural network algorithm, which deals with time-series data. Therefore, historical traffic data, environmental information, and distress (rutting, fatigue cracking, and transverse cracking) measurements were extracted from the LTPP database. A long short-term memory network was used to solve the vanishing gradient problem. Finally, an optimal model was achieved by setting the sequence length to 2 years. The second model utilizes an artificial neural network algorithm to correlate the impacting factors to the IRI value after maintenance. The impacting factors include maintenance activities; initial (new construction), milled, and overlaid AC thicknesses; as well as IRI value before maintenance activities. Combining the two models allows for the prediction of IRI values over AC pavement’s service life.


PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e29406 ◽  
Author(s):  
Melanie I. Stefan ◽  
David P. Marshall ◽  
Nicolas Le Novère

Sign in / Sign up

Export Citation Format

Share Document