Predicting Pavement Roughness Using Deep Learning Algorithms

Author(s):  
Qingwen Zhou ◽  
Egemen Okte ◽  
Imad L. Al-Qadi

Transportation agencies should measure pavement performance to appropriately strategize road preservation, maintenance, and rehabilitation activities. The international roughness index (IRI), which is a means to quantify pavement roughness, is a primary performance indicator. Many attempts have been made to correlate pavement roughness to other pavement performance parameters. Most existing correlations, however, are based on traditional statistical regression, which requires a hypothesis for the data. In this study, a novel approach was developed to predict asphalt concrete (AC) pavement IRI, utilizing datasets extracted from the Long-Term Pavement Performance (LTPP) database. IRI prediction is categorized by two models: (i) IRI progression over the pavement’s service life without maintenance/rehabilitation and (ii) the drop in IRI after maintenance. The first model utilizes the recurrent neural network algorithm, which deals with time-series data. Therefore, historical traffic data, environmental information, and distress (rutting, fatigue cracking, and transverse cracking) measurements were extracted from the LTPP database. A long short-term memory network was used to solve the vanishing gradient problem. Finally, an optimal model was achieved by setting the sequence length to 2 years. The second model utilizes an artificial neural network algorithm to correlate the impacting factors to the IRI value after maintenance. The impacting factors include maintenance activities; initial (new construction), milled, and overlaid AC thicknesses; as well as IRI value before maintenance activities. Combining the two models allows for the prediction of IRI values over AC pavement’s service life.

Author(s):  
Siyu Zhang ◽  
R. Ganesan ◽  
T. S. Sankar

Abstract The problem of estimating an unknown multivariate function from on-line vibration measurements, for determining the conditions of a machine system and for estimating its service life is considered. This problem is formulated into a multiple-index based trend analysis problem and the corresponding indices for trend analysis are extracted from the on-line vibration data. Selection of these indices is based on the simultaneous consideration of commonly-observed faults or malfunctions in the machine system being monitored. A neural network algorithm that has been developed by the present authors for multiple-index based regression is adapted to perform the trend analysis of a machine system. Applications of this neural network algorithm to the condition monitoring and life estimation of both a bearing system as well as a gearbox are fully demonstrated. The efficiency and computational supremacy of the new algorithm are established through comparing with the performance of Self-Organizing Mapping (SOM) and Constrained Topological Mapping (CTM) algorithms. Further, the usefulness of multiple-index based trend analysis in precisely predicting the condition and service life of a machine system is clearly demonstrated. Using on-line vibration signal to constitute the set of variables for trend analysis, and employing the newly-developed self-organizing neural algorithm for performing the trend analysis, a new approach is developed for machinery monitoring and diagnostics.


Author(s):  
Ida Ayu Utari Dewi ◽  
I Kadek Noppi Adi Jaya ◽  
Kadek Oky Sanjaya

COVID-19 (coronavirus disease 2019) is a large family of viruses that cause mild to severe illness, such as the common cold or colds and serious illnesses such as MERS and SARS. COVID-19 has become a pandemic, meaning that there has been an increase in cases of the disease which is quite fast and there has been spread between countries and caused enormous losses in various countries. The increasing number of COVID-19 cases every day in Indonesia, including in Bali Province and the resulting losses underlie the forecasting of the number of COVID-19 in Bali Province. Forecasting is carried out using the Neural Network algorithm for time series data on the number of COVID-19 in Bali Province. The data used is data on the number of COVID-19 in the Bali Province in the form of time series data sourced from the Bali Provincial Health Office. The entire forecasting process uses the Rapidminer Studio tools starting from preprocessing, modeling, testing and validation. The results of the RMSE (Root Mean Square Error) evaluation value based on testing for the positive patients were 18.956, the patients recovered were 15.413, the patients under treatment were 5.066 and the patients who died was 0.233.


2012 ◽  
Vol 24 (2) ◽  
pp. 89-103 ◽  
Author(s):  
Nabeel Al-Rawahi ◽  
Mahmoud Meribout ◽  
Ahmed Al-Naamany ◽  
Ali Al-Bimani ◽  
Adel Meribout

2020 ◽  
pp. 1-11
Author(s):  
Hongjiang Ma ◽  
Xu Luo

The irrationality between the procurement and distribution of the logistics system increases unnecessary circulation links and greatly reduces logistics efficiency, which not only causes a waste of transportation resources, but also increases logistics costs. In order to improve the operation efficiency of the logistics system, based on the improved neural network algorithm, this paper combines the logistic regression algorithm to construct a logistics demand forecasting model based on the improved neural network algorithm. Moreover, according to the characteristics of the complexity of the data in the data mining task itself, this article optimizes the ladder network structure, and combines its supervisory decision-making part with the shallow network to make the model more suitable for logistics demand forecasting. In addition, this paper analyzes the performance of the model based on examples and uses the grey relational analysis method to give the degree of correlation between each influencing factor and logistics demand. The research results show that the model constructed in this paper is reasonable and can be analyzed from a practical perspective.


Sign in / Sign up

Export Citation Format

Share Document