Early Prediction of the Cost of HPC Application Execution in the Cloud

Author(s):  
Massimiliano Rak ◽  
Mauro Turtur ◽  
Umberto Villano
Author(s):  
Said Limam ◽  
Ghalem Belalem

Cloud computing has become a significant technology and a great solution for providing a flexible, on-demand, and dynamically scalable computing infrastructure for many applications. Cloud computing also presents a significant technology trends. With the cloud computing technology, users use a variety of devices to access programs, storage, and application-development platforms over the Internet, via services offered by cloud computing providers. The probability of failure occur during the execution becomes stronger when the number of node increases; since it is impossible to fully prevent failures, one solution is to implement fault tolerance mechanisms. Fault tolerance has become a major task for computer engineers and software developers because the occurrence of faults increases the cost of using resources. In this paper, the authors have proposed an approach that is a combination of migration and checkpoint mechanism. The checkpoint mechanism minimizes the time lost and reduces the effect of failures on application execution while the migration mechanism guarantee the continuity of application execution and avoid any loss due to hardware failure in a way transparent and efficient. The results obtained by the simulation show the effectiveness of our approaches to fault tolerance in term of execution time and masking effects of failures.


2021 ◽  
Vol 18 (6) ◽  
pp. 7344-7362 ◽  
Author(s):  
Abdullah Lakhan ◽  
◽  
Mazhar Ali Dootio ◽  
Ali Hassan Sodhro ◽  
Sandeep Pirbhulal ◽  
...  

<abstract><p>These days, healthcare applications on the Internet of Medical Things (IoMT) network have been growing to deal with different diseases via different sensors. These healthcare sensors are connecting to the various healthcare fog servers. The hospitals are geographically distributed and offer different services to the patients from any ubiquitous network. However, due to the full offloading of data to the insecure servers, two main challenges exist in the IoMT network. (i) Data security of workflows healthcare applications between different fog healthcare nodes. (ii) The cost-efficient and QoS efficient scheduling of healthcare applications in the IoMT system. This paper devises the Cost-Efficient Service Selection and Execution and Blockchain-Enabled Serverless Network for Internet of Medical Things system. The goal is to choose cost-efficient services and schedule all tasks based on their QoS and minimum execution cost. Simulation results show that the proposed outperform all existing schemes regarding data security, validation by 10%, and cost of application execution by 33% in IoMT.</p></abstract>


Author(s):  
Massimiliano Rak ◽  
Mauro Turtur ◽  
Umberto Villano
Keyword(s):  

Author(s):  
James F. Mancuso

IBM PC compatible computers are widely used in microscopy for applications ranging from control to image acquisition and analysis. The choice of IBM-PC based systems over competing computer platforms can be based on technical merit alone or on a number of factors relating to economics, availability of peripherals, management dictum, or simple personal preference.IBM-PC got a strong “head start” by first dominating clerical, document processing and financial applications. The use of these computers spilled into the laboratory where the DOS based IBM-PC replaced mini-computers. Compared to minicomputer, the PC provided a more for cost-effective platform for applications in numerical analysis, engineering and design, instrument control, image acquisition and image processing. In addition, the sitewide use of a common PC platform could reduce the cost of training and support services relative to cases where many different computer platforms were used. This could be especially true for the microscopists who must use computers in both the laboratory and the office.


Author(s):  
H. Rose

The imaging performance of the light optical lens systems has reached such a degree of perfection that nowadays numerical apertures of about 1 can be utilized. Compared to this state of development the objective lenses of electron microscopes are rather poor allowing at most usable apertures somewhat smaller than 10-2 . This severe shortcoming is due to the unavoidable axial chromatic and spherical aberration of rotationally symmetric electron lenses employed so far in all electron microscopes.The resolution of such electron microscopes can only be improved by increasing the accelerating voltage which shortens the electron wave length. Unfortunately, this procedure is rather ineffective because the achievable gain in resolution is only proportional to λ1/4 for a fixed magnetic field strength determined by the magnetic saturation of the pole pieces. Moreover, increasing the acceleration voltage results in deleterious knock-on processes and in extreme difficulties to stabilize the high voltage. Last not least the cost increase exponentially with voltage.


1994 ◽  
Vol 58 (11) ◽  
pp. 832-835 ◽  
Author(s):  
ES Solomon ◽  
TK Hasegawa ◽  
JD Shulman ◽  
PO Walker
Keyword(s):  

1998 ◽  
Vol 138 (2) ◽  
pp. 205-205
Author(s):  
Snellman ◽  
Maljanen ◽  
Aromaa ◽  
Reunanen ◽  
Jyrkinen‐Pakkasvirta ◽  
...  
Keyword(s):  

2004 ◽  
Vol 171 (4S) ◽  
pp. 40-40
Author(s):  
Leslee L. Subak ◽  
Stephen K. Van Den Eeden ◽  
Jeanette S. Brown ◽  
Arona I. Ragins ◽  
Eric Vittinghoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document