Re-Synchronization control strategy for master-slave controlled microgrids

Author(s):  
Alessia Cagnano ◽  
Enrico De Tuglie ◽  
Andrea Cervi ◽  
Riccardo Stecca ◽  
Roberto Turri ◽  
...  
2020 ◽  
Vol 9 (2) ◽  
pp. 155-168
Author(s):  
Ziwang Lu ◽  
◽  
Guangyu Tian ◽  

Torque interruption and shift jerk are the two main issues that occur during the gear-shifting process of electric-driven mechanical transmission. Herein, a time-optimal coordination control strategy between the the drive motor and the shift motor is proposed to eliminate the impacts between the sleeve and the gear ring. To determine the optimal control law, first, a gear-shifting dynamic model is constructed to capture the drive motor and shift motor dynamics. Next, the time-optimal dual synchronization control for the drive motor and the time-optimal position control for the shift motor are designed. Moreover, a switched control for the shift motor between a bang-off-bang control and a receding horizon control (RHC) law is derived to match the time-optimal dual synchronization control strategy of the drive motor. Finally, two case studies are conducted to validate the bang-off-bang control and RHC. In addition, the method to obtain the appropriate parameters of the drive motor and shift motor is analyzed according to the coordination control method.


2012 ◽  
Vol 468-471 ◽  
pp. 1414-1420 ◽  
Author(s):  
Jian Wei Mi ◽  
Hong Bao ◽  
Jing Li Du

Considering the special characteristics of the redundant parallel manipulator, with emphasis on the variable of structure, relatively small workspace and the strong coupling relationship among arms,a synchronization control strategy is presented in this paper. Since in the feedforward ,the inertial and the coriolis matrix are designed constant according to relatively small workspace, position measurement of the endeffector in plane is ignored. Synchronization error and coupling error are introduced to reject the model errors of inertial and coriolis matrix as stated above. Using the method, the errors of driving arms may be reduced, as well as synchronization performance among axes improves. The stability of the controllers was proved by Lyapunov. Finally, experimental results show the feasibility.


2012 ◽  
Vol 468-471 ◽  
pp. 115-121 ◽  
Author(s):  
Wei Min Xu ◽  
Bao Bao Ding ◽  
Rui Geng ◽  
Xian Wen Zhou

With progress making in the art of industrial fields, control methods for synchronized multi-motor systems get more and more extensive applications, and there are increasingly high requirements for synchronous controllers. In this paper, a new control method for multi-axis drive systems is proposed, an adjacent-coupling algorithm based synchronization control strategy is designed, and a CMAC neural network based controller is developed. Simulation results show good performance of synchronization control accuracy, interference immunity, and convergence for the suggested synchronous controller


2014 ◽  
Vol 1049-1050 ◽  
pp. 1111-1115 ◽  
Author(s):  
Huan Huan Shi ◽  
Xiao Wu ◽  
Liang Hua ◽  
Hong Gang Ji

Although the traditional synchronous control system for the virtual shaft has met the accuracy requirements of most products, it still can not fully meet the requirements, for the high precision, high synchronization control. This article proposed multi-motor synchronous control strategy based on the relative coupling control combined with virtual main spindle control, and built simulation platform by Matlab/Simulink and simulated the strategy. The simulation result shows that the synchronous control strategy mentioned in this article can overcome synchronization error brought by external disturbance and parameter variation. Moreover, it will better achieve the multi-motor synchronous control compared with the traditional virtual shaft synchronization scheme


2014 ◽  
Vol 721 ◽  
pp. 269-272
Author(s):  
Fan Di Zhang

This paper propose fractional-order Lu complex system. Moreover, projective synchronization control of the fractional-order hyper-chaotic complex Lu system is studied based on feedback technique and the stability theorem of fractional-order systems, the scheme of anti-synchronization for the fractional-order hyper-chaotic complex Lu system is presented. Numerical simulations on examples are presented to show the effectiveness of the proposed control strategy.


2015 ◽  
Vol 9 (1) ◽  
pp. 977-981
Author(s):  
Jun Yao ◽  
Yu Tang ◽  
Zhencai Zhu

During the operation of a crawler crane driven by double winches, it is important to make the two winches actuate synchronously so that the hook is in a horizontal state to prevent accidents. In this paper, a novel synchronization control strategy for crawler crane driven by double winches using hook angle feedback information is proposed. The hook angle proportional to the length error of ropes is measured by a wireless angle sensor firstly and is then employed as a feedback control signal. To further improve the synchronization performance, cross-coupled control scheme together with the variable speed PID control is utilized on the basis of the collected hook angle signal. Simulations and experiments are then conducted and the results demonstrate that the proposed control scheme can obtain a better synchronization performance than the conventional control strategy using encoders and the inclination of the hook is greatly reduced to a limited small range.


Sign in / Sign up

Export Citation Format

Share Document