A Laser Scanner for Landmark Detection with the Sewer Inspection Robot KANTARO

Author(s):  
A. Ahrary ◽  
Y. Kawamura ◽  
M. Ishikawa
2007 ◽  
Vol 16 (04) ◽  
pp. 611-625 ◽  
Author(s):  
ALIREZA AHRARY ◽  
LI TIAN ◽  
SEI-ICHIRO KAMATA ◽  
MASUMI ISHIKAWA

Sewer environment is composed of cylindrical pipes, in which only a few landmarks such as manholes, inlets and pipe joints are available for localization. This paper presents a method for navigation of an autonomous sewer inspection robot in a sewer pipe system based on detection of landmarks. In this method, location of an autonomous sewer inspection robot in the sewer pipe system is estimated from stereo camera images. The laser scanner data are also used to ensure accurate localization of the landmarks and reduce the error in distance estimation by image processing. The method is implemented and evaluated in a sewer pipe test field using a prototype robot, demonstrating its effectiveness.


10.5772/5617 ◽  
2004 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Oliver Adria ◽  
Hermann Streich ◽  
Joachim Hertzberg

2020 ◽  
Vol 12 (6) ◽  
pp. 968 ◽  
Author(s):  
Tzu-Yi Chuang ◽  
Cheng-Che Sung

Routine maintenance of drainage systems, including structure inspection and dredging, plays an essential role in disaster prevention and reduction. Autonomous systems have been explored to assist in pipeline inspection due to safety issues in unknown underground environments. Most of the existing systems merely rely on video records for visual examination since sensors such as a laser scanner or sonar are costly, and the data processing requires expertise. This study developed a compact platform for sewer inspection, which consisted of low-cost components such as infrared and depth cameras with a g-sensor. Except for visual inspection, the platform not only identifies internal faults and obstacles but also evaluates their geometric information, geo-locations, and the block ratio of a pipeline in an automated fashion. As the platform moving, the g-sensor reflects the pipeline flatness, while an integrated simultaneous localization and mapping (SLAM) strategy reconstructs the 3D map of the pipeline conditions simultaneously. In the light of the experimental results, the reconstructed moving trajectory achieved a relative accuracy of 0.016 m when no additional control points deployed along the inspecting path. The geometric information of observed defects accomplishes an accuracy of 0.9 cm in length and width estimation and an accuracy of 1.1% in block ratio evaluation, showing promising results for practical sewer inspection. Moreover, the labeled deficiencies directly increase the automation level of documenting irregularity and facilitate the understanding of pipeline conditions for management and maintenance.


2020 ◽  
Vol 14 (3) ◽  
pp. 7296-7308
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
N. H. A. Ngadiman ◽  
M.R. Alkahari

Fused deposition modelling (FDM) is a process of joining materials based on material entrusion technique to produce objects from 3D model using layer-by-layer technique as opposed to subtractive manufacturing. However, many challenges arise in the FDM-printed part such as warping, first layer problem and elephant food that was led to an error in dimensional accuracy of the printed parts especially for the overhanging parts. Hence, in order to investigate the manufacturability of the FDM printed part, various geometrical and manufacturing features were developed using the benchmarking artifacts. Therefore, in this study, new benchmarking artifacts containing multiple overhang lengths were proposed. After the benchmarking artifacts were developed, each of the features were inspected using 3D laser scanner to measure the dimensional accuracy and tolerances. Based on 3D scanned parts, 80% of the fabricated parts were fabricated within ±0.5 mm of dimensional accuracy as compared with the CAD data. In addition, the multiple overhang lengths were also successfully fabricated with a very significant of filament sagging observed.


2013 ◽  
Vol 133 (1) ◽  
pp. 142-149
Author(s):  
Atsushi Shimada ◽  
Vincent Charvillat ◽  
Hajime Nagahara ◽  
Rin-ichiro Taniguchi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document