Evaluation of geometrical benchmark artifacts containing multiple overhang lengths fabricated using material extrusion technique

2020 ◽  
Vol 14 (3) ◽  
pp. 7296-7308
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
N. H. A. Ngadiman ◽  
M.R. Alkahari

Fused deposition modelling (FDM) is a process of joining materials based on material entrusion technique to produce objects from 3D model using layer-by-layer technique as opposed to subtractive manufacturing. However, many challenges arise in the FDM-printed part such as warping, first layer problem and elephant food that was led to an error in dimensional accuracy of the printed parts especially for the overhanging parts. Hence, in order to investigate the manufacturability of the FDM printed part, various geometrical and manufacturing features were developed using the benchmarking artifacts. Therefore, in this study, new benchmarking artifacts containing multiple overhang lengths were proposed. After the benchmarking artifacts were developed, each of the features were inspected using 3D laser scanner to measure the dimensional accuracy and tolerances. Based on 3D scanned parts, 80% of the fabricated parts were fabricated within ±0.5 mm of dimensional accuracy as compared with the CAD data. In addition, the multiple overhang lengths were also successfully fabricated with a very significant of filament sagging observed.

2021 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Narongkorn Krajangsawasdi ◽  
Lourens G. Blok ◽  
Ian Hamerton ◽  
Marco L. Longana ◽  
Benjamin K. S. Woods ◽  
...  

Fused deposition modelling (FDM) is a widely used additive layer manufacturing process that deposits thermoplastic material layer-by-layer to produce complex geometries within a short time. Increasingly, fibres are being used to reinforce thermoplastic filaments to improve mechanical performance. This paper reviews the available literature on fibre reinforced FDM to investigate how the mechanical, physical, and thermal properties of 3D-printed fibre reinforced thermoplastic composite materials are affected by printing parameters (e.g., printing speed, temperature, building principle, etc.) and constitutive materials properties, i.e., polymeric matrices, reinforcements, and additional materials. In particular, the reinforcement fibres are categorized in this review considering the different available types (e.g., carbon, glass, aramid, and natural), and obtainable architectures divided accordingly to the fibre length (nano, short, and continuous). The review attempts to distil the optimum processing parameters that could be deduced from across different studies by presenting graphically the relationship between process parameters and properties. This publication benefits the material developer who is investigating the process parameters to optimize the printing parameters of novel materials or looking for a good constituent combination to produce composite FDM filaments, thus helping to reduce material wastage and experimental time.


Author(s):  
Nor Aiman Sukindar ◽  
Azib Azhari Awang Dahan ◽  
Sharifah Imihezri Syed Shaharuddin ◽  
Nor Farah Huda Abd Halim

Abstract Fused Deposition Modelling (FDM) is an additive manufacturing (AM) process that produces a physical object directly from a CAD design using layer-by-layer deposition of the filament material that is extruded via a nozzle. In industry, FDM has become one of the most used AM processes for the production of low batch quantity and functional prototypes, due to its safety, efficiency, reliability, low cost, and ability to process manufacturing-grade engineering thermoplastic. Recently, the market is flooded with the availability of low-cost printers produced by numerous companies. This research aims to investigate the effect of different porosity levels on a scaffold structure produced using a low-cost 3D printer. Comparisons of these porous structures were made in terms of Von-Mises strain, total deformation, as well as compressive stress. Various porosity levels were created by varying printing parameters, including layer height, infill density, and shell thickness by slicing the initial solid CAD file using Repetier Host 3D printing software. Finite Element Analysis (FEA) simulation was then performed on the created scaffold structures by using Ansys Workbench 19.2. The simulation result indicates that the greater porosity level will result in higher total deformation of the structure. Meanwhile, the compression test shows that the minimum strength value obtained was favourable at 22 MPa and had exceeded that of the trabecular femur (15 MPa). However, its porosity level (maximum at 52%) was still below that of the minimum threshold of porosity level of 70 percent. However, the printing parameters currently used can be adjusted in the future. Therefore, it was deduced that the low-cost 3D printer offers promising potential to fabricate different porosity structures with multiple outcomes.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 672 ◽  
Author(s):  
Elena Verdejo de Toro ◽  
Juana Coello Sobrino ◽  
Alberto Martínez Martínez ◽  
Valentín Miguel Eguía ◽  
Jorge Ayllón Pérez

New technologies are offering progressively more effective alternatives to traditional ones. Additive Manufacturing (AM) is gaining importance in fields related to design, manufacturing, engineering and medicine, especially in applications which require complex geometries. Fused Deposition Modelling (FDM) is framed within AM as a technology in which, due to their layer-by-layer deposition, thermoplastic polymers are used for manufacturing parts with a high degree of accuracy and minimum material waste during the process. The traditional technology corresponding to FDM is Polymer Injection Moulding, in which polymeric pellets are injected by pressure into a mould using the required geometry. The increasing use of PA6 in Additive Manufacturing makes it necessary to study the possibility of replacing certain parts manufactured by injection moulding with those created using FDM. In this work, PA6 was selected due to its higher mechanical properties in comparison with PA12. Moreover, its higher melting point has been a limitation for 3D printing technology, and a further study of composites made of PA6 using 3D printing processes is needed. Nevertheless, analysis of the mechanical response of standardised samples and the influence of the manufacturing process on the polyamide’s mechanical properties needs to be carried out. In this work, a comparative study between the two processes was conducted, and conclusions were drawn from an engineering perspective.


2020 ◽  
Vol 40 (5) ◽  
pp. 745-754
Author(s):  
Gurpartap Singh ◽  
Rupinder Singh ◽  
S.S. Bal

Purpose The purpose of this study is to investigate dimensional accuracy (Δd), surface roughness (Ra) and micro hardness (HV) of partial dentures (PD) prepared with synergic combination of fused deposition modelling (FDM) assisted chemical vapour smoothing (CVS) patterns and conventional dental casting (DC) from multi-factor optimization view point. Design/methodology/approach The master pattern for PD was prepared with acrylonitrile butadiene styrene (ABS) thermoplastic on FDM set-up (one of the low cost additive manufacturing process) followed by CVS process. The final PD as functional prototypes was casted with nickel–chromium-based (Ni-Cr) alloy by varying Ni% (Z). The other input parameters were powder to water ratio P/W (X) and pH value (Y) of water used. Findings The results of this study suggest that for controlling the Δd and Ra of the PD, most important factor is X, followed by Z. For hardness of PD, the most important factor is Z. But from overall optimization viewpoint, the best settings are X-100/12, Y-10 and Z-61% (in Ni-Cr alloy). Further, based upon X-bar chart (for HV), the FDM-assisted DC process used for preparation of PD is statistically controlled. Originality/value This study highlights that PD prepared with X-100/12, Y-10 and Z-61% gives overall better results from multi-factor optimization view point. Finally, X-bar chart has been plotted to understand the statistical nature of the synergic combination of FDM, CVS and DC.


2012 ◽  
Vol 445 ◽  
pp. 883-888 ◽  
Author(s):  
Anoop Kumar Sood ◽  
Rajkumar Ohdar ◽  
S.S. Mahapatra

Fused deposition modelling (FDM) is one of the rapid prototyping (RP) processes that build part of any geometry by sequential deposition of material on a layer by layer basis. Unlike other RP systems which involve an array of lasers, powders, resins, this process uses heated thermoplastic filaments which are extruded from the tip of nozzle in a prescribed manner. Present work focuses on extensive study to understand the effect of five important parameters such as layer thickness, part build orientation, raster angle, raster width and air gap on the sliding wear of test specimen built through FDM. The study provides insight into complex dependency of wear on process parameters and proposes a statistically validated predictive equation. Microphotographs are used to explain the mechanism of wear. Finally, the predictive equation is used to find optimal parameter setting through bacteria foraging optimization algorithm (BFOA).


2017 ◽  
Vol 50 (3) ◽  
pp. 279-282
Author(s):  
Erin Komi ◽  
Petteri Kokkonen

Additive manufacturing (AM) of metal components is characterized by the joining of material particles or feedstock to make parts described by 3D model data in typically a layer by layer fashion [1]. These modern and constantly improving manufacturing techniques inherently allow far more geometric freedom than traditional “subtractive” manufacturing processes, and thus necessitate novel approaches to component design. Careful utilization of this geometric freedom can be translated into products characterized by improved functionality and performance, simplified assemblies, are customizable, and/or lightweight [2-5]. This paper provides a brief overview design approaches, manufacturing limitations, and available tools for successful design of additive manufactured components, with special attention paid to the selective laser melting (SLM) approach.


2019 ◽  
Vol 48 (1) ◽  
pp. 18-23
Author(s):  
Nishant Ranjan ◽  
Rupinder Singh ◽  
IPS Ahuja

Fused deposition modelling (FDM) is one of the low cost additive manufacturing (AM) process. The feed stock filament of FDM is the only consumable in the process and by preparing (in-house) bio compatible feed stock filament the application domain can be increased. Some studies have reported the use of twin screw extrusion (TSE) process for preparation of bio compatible feed stock filament (comprising of polyvinyl chloride (PVC) and polypropylene (PP) and hydroxyapatite (HAp) particles) with improved mechanical, dimensional and thermal properties, for commercial FDM setup. But hitherto very less has been reported on process capability of in-house prepared biocompatible feed stock filament. In the present work statistical analysis (for tensile strength, hardness and dimensional accuracy) has been performed for investigations of process capability. The results have been also supported by control charts (X-chart and R-chart) based upon the best feedstock filament wire.


Sign in / Sign up

Export Citation Format

Share Document