WA-A4 characteristics of the currents in p-n-p bipolar transistors with degenerate base region

1979 ◽  
Vol 26 (11) ◽  
pp. 1848-1848
Author(s):  
D.D. Tang
1991 ◽  
Vol 240 ◽  
Author(s):  
Bernard M. Henry ◽  
A. E. Staton-Bevan ◽  
V. K. M. Sharma ◽  
M. A. Crouch ◽  
S. S. Gill

ABSTRACTAu/Pd/Ti and Au/Ti/Pd ohmic structures to thin p+-GaAs layers have been investigated for use as contacts to the base region of HJBTs. The Au/Pd/Ti contact system yielded specific contact resistivities at or above 2.8 × 10−5Ω:cm2. Heat treatments up to 8 minutes at 380°C caused only limited interaction between the metallization and the semiconductor. The metal penetrated to a maximum depth of ≃2nm. Specific contact resistivity values less than 10−5Ωcm2 were achieved using the Au/Ti/Pd (400/75/75nm) scheme. The nonalloyed Au/Ti/Pd contact showed the best combination of electrical and structural properties with a contact resistivity value of 9 × 10≃6Ωcm2 and Pd penetration of the GaAs epilayer to a depth of cs30nm.


2006 ◽  
Vol 956 ◽  
Author(s):  
Haitao Ye ◽  
Niall Tumilty ◽  
David Garner ◽  
Richard B. Jackman

ABSTRACTA diamond based insulated gate bipolar transistor is incorporated into a two-dimensional device simulator (MEDICI) to examine the current gain (β) and potential distribution across the device. Initially, work has focused on an important component of IGBT structure, the PNP bipolar transistor, which has been simulated and is reported upon in this paper. Empirical parameters for emitter and collector regions were used. Various carrier concentrations for base region were used to optimize the simulation. It was found that decreasing the thickness of base region leads to an increase in current gain. A buffer layer is needed to prevent the punch-through at low carrier concentration in the base region. Various approaches of increasing the current gain are also discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document