Some numerical results using Kalaba's new approach to optimal control and filtering

1972 ◽  
Vol 17 (5) ◽  
pp. 713-715 ◽  
Author(s):  
K. Spingarn
2021 ◽  
Vol 36 (3) ◽  
pp. 165-176
Author(s):  
Kirill Nikitin ◽  
Yuri Vassilevski ◽  
Ruslan Yanbarisov

Abstract This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.


Automatica ◽  
2017 ◽  
Vol 78 ◽  
pp. 72-78 ◽  
Author(s):  
Wuchen Li ◽  
Jun Lu ◽  
Haomin Zhou ◽  
Shui-Nee Chow
Keyword(s):  

2001 ◽  
Vol 11 (03) ◽  
pp. 857-863 ◽  
Author(s):  
EDGAR N. SANCHEZ ◽  
JOSE P. PEREZ ◽  
GUANRONG CHEN

This Letter suggests a new approach to generating chaos via dynamic neural networks. This approach is based on a recently introduced methodology of inverse optimal control for nonlinear systems. Both Chen's chaotic system and Chua's circuit are used as examples for demonstration. The control law is derived to force a dynamic neural network to reproduce the intended chaotic attractors. Computer simulations are included for illustration and verification.


1993 ◽  
Vol 115 (1) ◽  
pp. 70-74 ◽  
Author(s):  
D. N. Paliwal ◽  
V. Bhalla

Large amplitude free vibrations of a clamped shallow spherical shell on a Pasternak foundation are studied using a new approach by Banerjee, Datta, and Sinharay. Numerical results are obtained for movable as well as immovable clamped edges. The effects of geometric, material, and foundation parameters on relation between nondimensional frequency and amplitude have been investigated and plotted.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qingyi Zhu ◽  
Seng W. Loke ◽  
Ye Zhang

The rapid propagation of computer virus is one of the greatest threats to current cybersecurity. This work deals with the optimal control problem of virus propagation among computers and external devices. To formulate this problem, two control strategies are introduced: (a) external device blocking, which means prohibiting a fraction of connections between external devices and computers, and (b) computer reconstruction, which includes updating or reinstalling of some infected computers. Then the combination of both the impact of infection and the cost of controls is minimized. In contrast with previous works, this paper takes into account a state-based cost weight index in the objection function instead of a fixed one. By using Pontryagin’s minimum principle and a modified forward-backward difference approximation algorithm, the optimal solution of the system is investigated and numerically solved. Then numerical results show the flexibility of proposed approach compared to the regular optimal control. More numerical results are also given to evaluate the performance of our approach with respect to various weight indexes.


Sign in / Sign up

Export Citation Format

Share Document