An implicit scheme for simulation of free surface non-Newtonian fluid flows on dynamically adapted grids

2021 ◽  
Vol 36 (3) ◽  
pp. 165-176
Author(s):  
Kirill Nikitin ◽  
Yuri Vassilevski ◽  
Ruslan Yanbarisov

Abstract This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.

2019 ◽  
Vol 11 (8) ◽  
pp. 168781401987230
Author(s):  
Ming-ming Liu ◽  
Rui-jia Jin ◽  
Zhen-dong Cui

A two-dimensional numerical model is developed to investigate the phenomenon of resonance in narrow gaps. Instead of using commonly used Volume of Fluid method to capture the free surface which is sometimes difficult to capture the geometric properties of the geometrically complicated interface, the free surface is traced by using Arbitrary Lagrangian–Eulerian method. The numerical model is based on the two-dimensional Reynolds-Averaged Navier–Stokes equations. The numerical model is validated against wave propagation in wave flume. Comparisons between the numerical results and available theoretical data show satisfactory agreements. Fluid resonance in narrow gaps of fixed rectangular structures are simulated. Numerical results show that resonance wave height and wave frequency for rectangle boxes with sphenoid corners is larger than for rectangle boxes.


Author(s):  
Weihua Mo ◽  
Philip L.-F. Liu

AbstractIn this paper we validate a numerical model for-structure interaction by comparing numerical results with laboratory data. The numerical model is based on the Navier-Stokes(N-S) equations for an incompressible fluid. The N-S equations are solved by two-step projection finite volume scheme and the free surface displacements are tracked by the slender vertical piles. Numerical results are compared with the laboratory data and very good agreement is observed for the time history of free surface displacement, fluid particle velocity and force. The agreement for dynamic pressure on the cylinder is less satisfactory, which is primarily caused by instrument errors.


Author(s):  
Ankit Aggarwal ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Hans Bihs ◽  
Øivind Asgeir Arnsten

In the present study, the irregular wave forces on a fully submerged circular cylinder are investigated using the open-source computational fluid dynamics (CFD) model REEF3D. A complete three dimensional representation of the ocean waves requires the consideration of the sea surface as an irregular wave train with the random characteristics. The numerical model uses the incompressible Reynolds-averaged Navier-Stokes (RANS) equations together with the continuity equation to solve the fluid flow problem. Turbulence modeling is carried out using the two equation k-ω model. Spatial discretization is done using an uniform Cartesian grid. The level set method is used for computing the free surface. For time discretization, third-order total variation diminishing (TVD) Runge Kutta scheme is used. Ghost cell boundary method is used for implementing the complex geometries in the numerical model. MPI is used for the exchange of the value of a ghost cell. Relaxation method is used for the wave generation. The numerical model is validated for the irregular waves for a wave tank without any structure. Further, the numerical model is validated by comparing the numerical results with the experimental data for a fully submerged circular cylinder under regular waves and irregular waves. The numerical results are in a good agreement with the experimental data for the regular and irregular wave forces. The JONSWAP spectrum is used for the wave generation. The free surface features and kinematics around the cylinder is also presented and discussed.


2021 ◽  
Vol 44 (3) ◽  
Author(s):  
N Narinder ◽  
Wei-jing Zhu ◽  
Clemens Bechinger

Abstract We study the behavior of active particles (APs) moving in a viscoelastic fluid in the presence of geometrical confinements. Upon approaching a flat wall, we find that APs slow down due to compression of the enclosed viscoelastic fluid. In addition, they receive a viscoelastic torque leading to sudden orientational changes and departure from walls. Based on these observations, we develop a numerical model which can also be applied to other geometries and yields good agreement with experimental data. Our results demonstrate, that APs are able to move through complex geometrical structures more effectively when suspended in a viscoelastic compared to a Newtonian fluid. Graphic Abstract


2018 ◽  
Author(s):  
Hans Bihs ◽  
Arun Kamath ◽  
Ankit Aggarwal ◽  
Csaba Pakozdi

For the estimation of wave loads on offshore structures, relevant extreme wave events need to be identified. In order to achieve this, long term wave simulations of relatively large scales need to be performed. Computational Fluid Dynamics (CFD) based Numerical Wave Tanks (NWT) with an interface capturing two-phase flow approach typically require too large computational resources to achieve this efficiently. They are more suitable for the near-field hydrodynamics of steep and breaking wave impacts on the structures. In the current paper, a three-dimensional non-hydrostatic wave model is presented. While it also solves the Navier-Stokes equations, it employs an interface tracking method for the calculation of the free surface location. The algorithm for the simulation of the free surface is based on the continuity of the horizontal velocities along the vertical water column. With this approach, relatively fewer cells are needed in the vicinity of the air-water interface compared to CFD based NWTs. With coarser grids and larger time steps, the wave propagation can be accurately predicted. The numerical model solves the governing equations on an rectilinear grid, which allows for the employment of high-order finite differences. For time stepping, a fractional step method with implicit treatment of the diffusion terms is employed. The projection method is used for the calculation of the non-hydrostatic pressure. The resulting Poisson equation is solved with Hypres geometric multigrid preconditioned conjugated gradient algorithm. The numerical model is parallelized following the domain decomposition strategy and MPI communication between the individual processors. In the current paper, the capabilities of the new wave model are presented by comparing the wave propagation in the tank with the CFD approach in a 2D simulation. Further, a 3D simulation is carried out to determine the wave forces on a vertical cylinder. The calculated wave forces using the new approach is compared to that obtained using the CFD approach and experimental data. It is seen that the new approach provides a similar accuracy to that from the CFD approach while providing a large reduction in the time taken for the simulation. The gain is calculated to be about 4.5 for the 2D simulation and about 7.1 for the 3D simulation.


1998 ◽  
Vol 359 ◽  
pp. 239-264 ◽  
Author(s):  
PENGZHI LIN ◽  
PHILIP L.-F. LIU

This paper describes the development of a numerical model for studying the evolution of a wave train, shoaling and breaking in the surf zone. The model solves the Reynolds equations for the mean (ensemble average) flow field and the k–ε equations for the turbulent kinetic energy, k, and the turbulence dissipation rate, ε. A nonlinear Reynolds stress model (Shih, Zhu & Lumley 1996) is employed to relate the Reynolds stresses and the strain rates of the mean flow. To track free-surface movements, the volume of fluid (VOF) method is employed. To ensure the accuracy of each component of the numerical model, several steps have been taken to verify numerical solutions with either analytical solutions or experimental data. For non-breaking waves, very accurate results are obtained for a solitary wave propagating over a long distance in a constant depth. Good agreement between numerical results and experimental data has also been observed for shoaling and breaking cnoidal waves on a sloping beach in terms of free-surface profiles, mean velocities, and turbulent kinetic energy. Based on the numerical results, turbulence transport mechanisms under breaking waves are discussed.


2003 ◽  
Vol 41 (1) ◽  
pp. 110-112
Author(s):  
ZhixiaN. Cao ◽  
Rodney Day ◽  
Sarah Liriano

Sign in / Sign up

Export Citation Format

Share Document