scholarly journals Discontinuous Nash Equilibria in a Two-Stage Linear-Quadratic Dynamic Game With Linear Constraints

2019 ◽  
Vol 64 (7) ◽  
pp. 3074-3079 ◽  
Author(s):  
Rajani Singh ◽  
Agnieszka Wiszniewska-Matyszkiel
2018 ◽  
Vol 238 (6) ◽  
pp. 541-569
Author(s):  
Ivan Savin ◽  
Dmitri Blueschke ◽  
Viktoria Blueschke-Nikolaeva

Abstract We propose a new method for solving nonlinear dynamic tracking games using a meta-heuristic approach. In contrast to ‘traditional’ methods based on linear-quadratic (LQ) techniques, this derivative-free method is very flexible with regard to the objective function specification. The proposed method is applied to a three-player dynamic game and tested versus a derivative-dependent method in approximating solutions of different game specifications. In particular, we consider a dynamic game between fiscal (played by national governments) and monetary policy (played by a central bank) in a monetary union. Apart from replicating results of the LQ-based techniques in a standard setting, we solve two ‘non-standard’ extensions of this game (dealing with an inequality constraint in a control variable and introducing asymmetry in penalties of the objective function), identifying both a cooperative Pareto and a non-cooperative open-loop Nash equilibria, where the traditional methods are not applicable. We, thus, demonstrate that the proposed method allows one to study more realistic problems and gain better insights for economic policy.


2020 ◽  
Vol 81 (11) ◽  
pp. 2108-2131
Author(s):  
V. I. Zhukovskiy ◽  
A. S. Gorbatov ◽  
K. N. Kudryavtsev

2005 ◽  
Vol 50 (165) ◽  
pp. 121-144
Author(s):  
Bozo Stojanovic

Market processes can be analyzed by means of dynamic games. In a number of dynamic games multiple Nash equilibria appear. These equilibria often involve no credible threats the implementation of which is not in the interests of the players making them. The concept of sub game perfect equilibrium rules out these situations by stating that a reasonable solution to a game cannot involve players believing and acting upon noncredible threats or promises. A simple way of finding the sub game perfect Nash equilibrium of a dynamic game is by using the principle of backward induction. To explain how this equilibrium concept is applied, we analyze the dynamic entry games.


2019 ◽  
Vol 21 (02) ◽  
pp. 1940011
Author(s):  
Thomas A. Weber

To quantify a player’s commitment in a given Nash equilibrium of a finite dynamic game, we map the corresponding normal-form game to a “canonical extension,” which allows each player to adjust his or her move with a certain probability. The commitment measure relates to the average overall adjustment probabilities for which the given Nash equilibrium can be implemented as a subgame-perfect equilibrium in the canonical extension.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jianbo Zhao ◽  
Fenfen Xiong

A novel cooperative guidance scenario is proposed that implements fire-and-forget attacks for seeker-less missiles with a cheap finder for stationary targets and without requiring real-time communication among missiles or precise position information. Within the proposed cooperative scenario, the classic leader-follower framework is utilized, and a two-stage cooperative guidance law is derived for the seeker-less missile. Linear-quadratic optimal control and biased proportional navigation guidance (PNG) are employed to develop this two-stage cooperative guidance law to minimize the control cost in the first stage and to reduce the maximum acceleration command in the second stage when the acceleration command is continuous. Simulations and comparisons are conducted that demonstrate the effectiveness and advantages of the proposed guidance law.


Sign in / Sign up

Export Citation Format

Share Document