Sparsity-induced Graph Convolutional Network for Semi-supervised Learning

Author(s):  
Jianhang Zhou ◽  
Shaoning Zeng ◽  
Bob Zhang
2020 ◽  
Vol 34 (04) ◽  
pp. 5892-5899
Author(s):  
Ke Sun ◽  
Zhouchen Lin ◽  
Zhanxing Zhu

Graph Convolutional Networks (GCNs) play a crucial role in graph learning tasks, however, learning graph embedding with few supervised signals is still a difficult problem. In this paper, we propose a novel training algorithm for Graph Convolutional Network, called Multi-Stage Self-Supervised (M3S) Training Algorithm, combined with self-supervised learning approach, focusing on improving the generalization performance of GCNs on graphs with few labeled nodes. Firstly, a Multi-Stage Training Framework is provided as the basis of M3S training method. Then we leverage DeepCluster technique, a popular form of self-supervised learning, and design corresponding aligning mechanism on the embedding space to refine the Multi-Stage Training Framework, resulting in M3S Training Algorithm. Finally, extensive experimental results verify the superior performance of our algorithm on graphs with few labeled nodes under different label rates compared with other state-of-the-art approaches.


Author(s):  
Rakesh Kumar Yadav ◽  
Manikanta Moghili ◽  
Abhishek ◽  
Prashant Shukla ◽  
Shekhar Verma

2020 ◽  
Vol 34 (04) ◽  
pp. 4691-4698
Author(s):  
Shu Li ◽  
Wen-Tao Li ◽  
Wei Wang

In many real-world applications, the data have several disjoint sets of features and each set is called as a view. Researchers have developed many multi-view learning methods in the past decade. In this paper, we bring Graph Convolutional Network (GCN) into multi-view learning and propose a novel multi-view semi-supervised learning method Co-GCN by adaptively exploiting the graph information from the multiple views with combined Laplacians. Experimental results on real-world data sets verify that Co-GCN can achieve better performance compared with state-of-the-art multi-view semi-supervised methods.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jiayu Shang ◽  
Yanni Sun

Abstract Background Prokaryotic viruses, which infect bacteria and archaea, are the most abundant and diverse biological entities in the biosphere. To understand their regulatory roles in various ecosystems and to harness the potential of bacteriophages for use in therapy, more knowledge of viral-host relationships is required. High-throughput sequencing and its application to the microbiome have offered new opportunities for computational approaches for predicting which hosts particular viruses can infect. However, there are two main challenges for computational host prediction. First, the empirically known virus-host relationships are very limited. Second, although sequence similarity between viruses and their prokaryote hosts have been used as a major feature for host prediction, the alignment is either missing or ambiguous in many cases. Thus, there is still a need to improve the accuracy of host prediction. Results In this work, we present a semi-supervised learning model, named HostG, to conduct host prediction for novel viruses. We construct a knowledge graph by utilizing both virus-virus protein similarity and virus-host DNA sequence similarity. Then graph convolutional network (GCN) is adopted to exploit viruses with or without known hosts in training to enhance the learning ability. During the GCN training, we minimize the expected calibrated error (ECE) to ensure the confidence of the predictions. We tested HostG on both simulated and real sequencing data and compared its performance with other state-of-the-art methods specifically designed for virus host classification (VHM-net, WIsH, PHP, HoPhage, RaFAH, vHULK, and VPF-Class). Conclusion HostG outperforms other popular methods, demonstrating the efficacy of using a GCN-based semi-supervised learning approach. A particular advantage of HostG is its ability to predict hosts from new taxa.


Sign in / Sign up

Export Citation Format

Share Document