Corrections to “Bandwidth Limitations on Linearly Polarized Microstrip Antennas” [Feb 10 250-257

2010 ◽  
Vol 58 (3) ◽  
pp. 1018-1018
Author(s):  
Raed A. Abd-Alhameed
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Tiiti Kellomäki

When circularly polarized (CP) microstrip antennas are bent, the polarization becomes elliptical. We present a simple model that describes the phenomenon. The two linear modes present in a CP patch are modeled separately and added together to produce CP. Bending distorts the almost-spherical equiphase surface of a linearly polarized patch, which leads to phase imbalance in the far-field of a CP patch. The model predicts both the frequency shifting of the axial ratio band as well as the narrowing of the axial ratio beam. Uncontrolled bending is a problem associated especially with flexible textile antennas, and wearable antennas should therefore be designed somewhat conformal.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
D. C. Nascimento ◽  
Prêntice C. Ribeiro Filho ◽  
Alexis F. Tinoco-S ◽  
J. C. da S. Lacava

A novel cavity-backed probe-fed linearly polarized microstrip antenna based on the concept of hybrid radiators is proposed and implemented. The resulting flush-mounted antenna exhibits symmetrical bandwidth, low cross-polarization radiation in theH-plane, due to its hybrid patch, and low cost, since it can be built on a FR4 laminate. Substrate integrated waveguide technology is used in the fabrication of the metallic cavity. The effect of mutual coupling is analyzed for two classical arrangements: the side-by-side and the collinear configurations.


Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 373-380
Author(s):  
Christopher M. A. Bonenberger ◽  
Klaus W. Kark

Abstract Considering the narrow bandwidth of microstrip antennas, but also their applicability in upcoming technologies, this paper addresses the problem of wide-band matching, the theoretical bounds on the matching bandwidth and low-cost and low-complexity matching strategies. In this context the Bode-Fano bounds of single mode, linearly polarized aperture-coupled microstrip antennas is evaluated, optimized and compared to the theoretical bounds on matching bandwidth of other common feeding technologies. A detailed study of the input impedance of aperture-coupled patch antennas shows how to widen the Fano bounds. Based on this, a straight-forward and effective method to optimize the Fano bound is given. After optimization of the antennas input impedance, basic matching techniques can be applied, to exploit the enlarged bandwidth potential. As an example a $\lambda/4$-transformer as matching element is proposed. Design equations and simulation and measurement results of X-band prototypes are given as verification.


2010 ◽  
Vol 58 (2) ◽  
pp. 250-257 ◽  
Author(s):  
A. Ghorbani ◽  
M. Ansarizadeh ◽  
R.A. Abd-alhameed

2011 ◽  
Vol E94-B (9) ◽  
pp. 2653-2655
Author(s):  
Kazuki IKEDA ◽  
Keigo SATO ◽  
Ken-ichi KAGOSHIMA ◽  
Shigeki OBOTE ◽  
Atsushi TOMIKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document