scholarly journals Measurement and Performance of Textile Antenna Efficiency on a Human Body in a Reverberation Chamber

2013 ◽  
Vol 61 (2) ◽  
pp. 871-881 ◽  
Author(s):  
Stephen J. Boyes ◽  
Ping Jack Soh ◽  
Yi Huang ◽  
Guy A. E. Vandenbosch ◽  
Neda Khiabani
Author(s):  
Yi-Ning Wu ◽  
Adam Norton ◽  
Michael R. Zielinski ◽  
Pei-Chun Kao ◽  
Andrew Stanwicks ◽  
...  

Objective To provide a comprehensive characterization of explosive ordnance disposal (EOD) personal protective equipment (PPE) by evaluating its effects on the human body, specifically the poses, tasks, and conditions under which EOD operations are performed. Background EOD PPE is designed to protect technicians from a blast. The required features of protection make EOD PPE heavy, bulky, poorly ventilated, and difficult to maneuver in. It is not clear how the EOD PPE wearer physiologically adapts to maintain physical and cognitive performance during EOD operations. Method Fourteen participants performed EOD operations including mobility and inspection tasks with and without EOD PPE. Physiological measurement and kinematic data recording were used to record human physiological responses and performance. Results All physiological measures were significantly higher during the mobility and the inspection tasks when EOD PPE was worn. Participants spent significantly more time to complete the mobility tasks, whereas mixed results were found in the inspection tasks. Higher back muscle activations were seen in participants who performed object manipulation while wearing EOD PPE. Conclusion EOD operations while wearing EOD PPE pose significant physical stress on the human body. The wearer’s mobility is impacted by EOD PPE, resulting in decreased speed and higher muscle activations. Application The testing and evaluation methodology in this study can be used to benchmark future EOD PPE designs. Identifying hazards posed by EOD PPE lays the groundwork for developing mitigation plans, such as exoskeletons, to reduce physical and cognitive stress caused by EOD PPE on the wearers without compromising their operational performance.


2021 ◽  
Vol 36 (9) ◽  
pp. 1152-1158
Author(s):  
Wei Xue ◽  
Yuxin Ren ◽  
Xiaoming Chen ◽  
Zhengpeng Wang ◽  
Yingsong Li ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Muzaffer Kanaan ◽  
Memduh Suveren

Results about the problem of accurate ranging within the human body using ultra-wideband signals are shown. The ability to accurately measure the range between a sensor implanted in the human body and an external receiver can make a number of new medical applications such as better wireless capsule endoscopy, next-generation microrobotic surgery systems, and targeted drug delivery systems possible. The contributions of this paper are twofold. First, we propose two novel range estimators: one based on an implementation of the so-called CLEAN algorithm for estimating channel profiles and another based on neural networks. Second, we develop models to describe the statistics of the ranging error for both types of estimators. Such models are important for the design and performance analysis of localization systems. It is shown that the ranging error in both cases follows a heavy-tail distribution known as the Generalized Extreme Value distribution. Our results also indicate that the estimator based on neural networks outperforms the CLEAN-based estimator, providing ranging errors better than or equal to 3.23 mm with 90% probability.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 558 ◽  
Author(s):  
Ashok Yadav ◽  
Vinod Kumar Singh ◽  
Akash Kumar Bhoi ◽  
Gonçalo Marques ◽  
Begonya Garcia-Zapirain ◽  
...  

A compact textile ultra-wideband (UWB) antenna with an electrical dimension of 0.24λo × 0.24λo × 0.009λo with microstrip line feed at lower edge and a frequency of operation of 2.96 GHz is proposed for UWB application. The analytical investigation using circuit theory concepts and the cavity model of the antenna is presented to validate the design. The main contribution of this paper is to propose a wearable antenna with wide impedance bandwidth of 118.68 % (2.96–11.6 GHz) applicable for UWB range of 3.1 to 10.6 GHz. The results present a maximum gain of 5.47 dBi at 7.3 GHz frequency. Moreover, this antenna exhibits Omni and quasi-Omni radiation patterns at various frequencies (4 GHz, 7 GHz and 10 GHz) for short-distance communication. The cutting notch and slot on the patch, and its effect on the antenna impedance to increase performance through current distribution is also presented. The time-domain characteristic of the proposed antenna is also discussed for the analysis of the pulse distortion phenomena. A constant group delay less than 1 ns is obtained over the entire operating impedance bandwidth (2.96–11.6 GHz) of the textile antenna in both situations, i.e., side by side and front to front. Linear phase consideration is also presented for both situations, as well as configurations of reception and transmission. An assessment of the effects of bending and humidity has been demonstrated by placing the antenna on the human body. The specific absorption rate (SAR) value was tested to show the radiation effect on the human body, and it was found that its impact on the human body SAR value is 1.68 W/kg, which indicates the safer limit to avoid radiation effects. Therefore, the proposed method is promising for telemedicine and mobile health systems.


Author(s):  
Maria da Piedade Ferreira

This chapter describes a teaching method, corporeal architecture, which uses performance art and neuroscience to teach interior design and architecture with a focus on embodiment and experience. The method sets new approaches to teach design, as it integrates design, neuroscience, and performance art and brings awareness to the importance of multi-sensory experience. The interaction with design objects at different scales is taken as an opportunity to investigate how the human body relates to space and allow the exploration of affordances through movement. Students are instructed with physical exercises and encouraged to design, build, and perform with objects such as chairs, cabinets and tables, installations, existing buildings, and public spaces. The performances explore narratives which reveal or subvert expectations we have around design objects. The methodology has a background in phenomenology, Maurice Merleau-Ponty and Juhani Pallasmaa; Antonio Damásio in neuroscience; and Oskar Schlemmer, Marina Abramovic, and Stelarc in Performance Art.


Sign in / Sign up

Export Citation Format

Share Document