scholarly journals Dual-Band Wide-Angle Scanning Planar Phased Array in X/Ku-Bands

2014 ◽  
Vol 62 (5) ◽  
pp. 2514-2521 ◽  
Keyword(s):  
2018 ◽  
Vol 17 (2) ◽  
pp. 259-262 ◽  
Author(s):  
Jiajia Guo ◽  
Shaoqiu Xiao ◽  
Shaowei Liao ◽  
Bingzhong Wang ◽  
Quan Xue

2018 ◽  
Vol 66 (5) ◽  
pp. 2678-2683 ◽  
Author(s):  
You-Feng Cheng ◽  
Xiao Ding ◽  
Wei Shao ◽  
Bing-Zhong Wang
Keyword(s):  

Author(s):  
Bin Tang Bin Tang ◽  
Shenghong Wu Shenghong Wu ◽  
Wenxian Yu Wenxian Yu
Keyword(s):  

2020 ◽  
Vol 91 (3) ◽  
pp. 30901
Author(s):  
Yibo Tang ◽  
Longhui He ◽  
Jianming Xu ◽  
Hailang He ◽  
Yuhan Li ◽  
...  

A dual-band microwave metamaterial absorber with single-peak regulation and wide-angle absorption has been proposed and illustrated. The designed metamaterial absorber is consisted of hollow-cross resonators, solid-cross resonators, dielectric substrate and metallic background plane. Strong absorption peak coefficients of 99.92% and 99.55% are achieved at 8.42 and 11.31 GHz, respectively, which is basically consistent with the experimental results. Surface current density and changing material properties are employed to illustrate the absorptive mechanism. More importantly, the proposed dual-band metamaterial absorber has the adjustable property of single absorption peak and could operate well at wide incidence angles for both transverse electric (TE) and transverse magnetic (TM) waves. Research results could provide and enrich instructive guidances for realizing a single-peak-regulation and wide-angle dual-band metamaterial absorber.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 63
Author(s):  
Xinyu He ◽  
Tao Dong ◽  
Jingwen He ◽  
Yue Xu

In this paper, a new design approach of optical phased array (OPA) with low side lobe level (SLL) and wide angle steering range is proposed. This approach consists of two steps. Firstly, a nonuniform antenna array is designed by optimizing the antenna spacing distribution with particle swarm optimization (PSO). Secondly, on the basis of the optimized antenna spacing distribution, PSO is further used to optimize the phase distribution of the optical antennas when the beam steers for realizing lower SLL. Based on the approach we mentioned, we design a nonuniform OPA which has 1024 optical antennas to achieve the steering range of ±60°. When the beam steering angle is 0°, 20°, 30°, 45° and 60°, the SLL obtained by optimizing phase distribution is −21.35, −18.79, −17.91, −18.46 and −18.51 dB, respectively. This kind of OPA with low SLL and wide angle steering range has broad application prospects in laser communication and lidar system.


Sign in / Sign up

Export Citation Format

Share Document