Inverse Problem Solution Algorithms for Current Density Distribution Calculation in Different HTS Tape Configurations Basing on Minimum Self-Magnetic Field Measurements

2016 ◽  
Vol 26 (3) ◽  
pp. 1-4 ◽  
Author(s):  
Oleg A. Shyshkin ◽  
Yurij G. Kazarinov ◽  
Mohamed Tallouli ◽  
Tosin Famakinwa ◽  
Satarou Yamaguchi
2017 ◽  
Vol 79 (2) ◽  
pp. 20901 ◽  
Author(s):  
Lyes Ifrek ◽  
Gilles Cauffet ◽  
Olivier Chadebec ◽  
Yann Bultel ◽  
Sébastien Rosini ◽  
...  

An original approach used for the identification of faults in fuel cell stacks is presented. It is based on the 3D reconstruction of the current density from external magnetic field measurements which is an ill-posed magnetostatic linear inverse problem. A suitable and original current density and magnetic field basis are proposed in order to define both local and global faults on a fuel cell stack. The inverse problem is regularized by truncated singular value decomposition (SVD) to ensure the uniqueness of the solution.


2019 ◽  
Vol 55 (6) ◽  
pp. 1-5 ◽  
Author(s):  
Lyes Ifrek ◽  
Olivier Chadebec ◽  
Sebastien Rosini ◽  
Gilles Cauffet ◽  
Yann Bultel ◽  
...  

2016 ◽  
Author(s):  
Vira Pronenko ◽  
Fedir Dudkin

Abstract. The profession of a miner is one of the most dangerous in the world. Among the main causes of the fatalities in the underground coal mines is the untimely alerting of the accident, as well as the lack of information for the rescuers about the actual location of the miners after the accident. In an emergency situation (failure or destruction of underground infrastructure), personnel search behind and beneath of blockage should be provided urgently. But none of the standard technologies (RFID, DECT, WiFi, emitting cable), which use the stationary technical devices in mines, provides the information about the people location caught by accident with necessary precision. The only technology that is able to provide guaranteed delivery of messages about the accident to the mine personnel, regardless of their location and under any destruction in the mine, is low-frequency radio technology able to operate through the thickness of rocks even if it is wet. The proposed new system for miners localization is based on solving the inverse problem that allows the magnetic field source coordinates determining using the data of magnetic field measurements. This approach is based on the measurement of the magnetic field radiated by the miner's responder beacon using two fixed and spaced three-component magnetic field receivers and next the inverse problem solution. As a result, the working model of the system for miner's beacon search and localization (MILES – miner's location emergency system) was developed and successfully tested. The paper presents the peculiarities of this development and the results of experimental tests.


2021 ◽  
Vol 1037 ◽  
pp. 581-588
Author(s):  
Inna A. Solovjeva ◽  
Denis S. Solovjev ◽  
Yuri V. Litovka

The article considers the influence of the surface geometry of a detail on the deposition of coating thickness in the simulation of electroplating processes. The methods for obtaining sets of points describing the surface of a detail are analyzed. Solving the inverse problem (recovering the 3D surface of a detail according to its 2D drawings) is the most promising method. The inverse problem solution is decomposed into simpler geometric problems: input data processing; obtaining primitives; obtaining the desired surface of a detail by applying logical operations to primitives. Mathematical statements are formulated and solution algorithms are proposed for solving these problems. The inverse problem solution is implemented through software. The distribution of the nickel coating thickness is shown for a detail, the surface of which is obtained by solving the inverse problem.


2016 ◽  
Vol 5 (2) ◽  
pp. 561-566 ◽  
Author(s):  
Vira Pronenko ◽  
Fedir Dudkin

Abstract. The profession of a miner is one of the most dangerous in the world. Among the main causes of fatalities in underground coal mines are the delayed alert of the accident and the lack of information regarding the actual location of the miners after the accident. In an emergency situation (failure or destruction of underground infrastructure), personnel search behind and beneath blockage needs to be performed urgently. However, none of the standard technologies – radio-frequency identification (RFID), Digital Enhanced Cordless Telecommunications (DECT), Wi-Fi, emitting cables, which use the stationary technical devices in mines – provide information about the miners location with the necessary precision. The only technology that is able to provide guaranteed delivery of messages to mine personnel, regardless of their location and under any destruction in the mine, is low-frequency radio technology, which is able to operate through the thickness of rocks even if they are wet. The proposed new system for miner localization is based on solving the inverse problem of determining the magnetic field source coordinates using the data of magnetic field measurements. This approach is based on the measurement of the magnetic field radiated by the miner's responder beacon using two fixed and spaced three-component magnetic field receivers and the inverse problem solution. As a result, a working model of the system for miner's beacon search and localization (MILES – MIner's Location Emergency System) was developed and successfully tested. This paper presents the most important aspects of this development and the results of experimental tests.


2020 ◽  
Vol 14 (2) ◽  
Author(s):  
D.A. Broadway ◽  
S.E. Lillie ◽  
S.C. Scholten ◽  
D. Rohner ◽  
N. Dontschuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document