AbstractWe discuss the underlying atomistic mechanism for experimentally observed large tensile ductility in various strongly ordered B2 intermetallic compounds. First-principles calculations demonstrate that all of the compounds exhibit little energy differences between the B2, B27 and B33 phases. These calculations relate observations of ductility in YAg, YCu and ZrCo to shape-memory materials including NiTi. One transformation pathway between the B2 and B33 phases establishes a connection between this phase competition, and stacking faults on the {011}B2 plane. The low energy of such a stacking fault will lead to splitting of the b=<100> dislocations into b/2 partials, observed in ZrCo, TiCo, and in the B19' phase of NiTi. Calculations demonstrate that this pathway is competitive with the traditional pathway for NiTi.