ion extraction
Recently Published Documents


TOTAL DOCUMENTS

556
(FIVE YEARS 58)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
Mengfang Jiang ◽  
Xuefeng Zhang ◽  
Xiao Du ◽  
Xiaowei An ◽  
Fengfeng Gao ◽  
...  

2021 ◽  
Author(s):  
Shiyue Fang

The ion pair thermal model for MALDI MS is described. Key elements of the model include thermal desorption and ionization, strong tendency to neutralization via ion pair formation and proton transfer in the gas phase, thermal equilibrium, overall charge neutral plume, and thermal energy assisted free ion generation via ion pair separation by ion extraction potential. The quantities of ions in the solid sample and in the gaseous plume are estimated. Ion yields of different classes of molecules including peptides, nucleic acids, permanent salts and neutral molecules are estimated at the macroscale and single ion pair levels. The estimated ion yields are close to experimentally observed values under certain assumptions. Explanations of several observations in MALDI MS such as mostly single-charged peaks, improvement of spectra by ammonium cation, and ion suppression are provided. We expect that the model can give insights for the design of new conditions and systems for improving the sensitivity and resolution of MALDI MS and improving its capability and reliability to analyze large biomolecules.


2021 ◽  
Vol 9 ◽  
Author(s):  
U. Fantz ◽  
S. Briefi ◽  
A. Heiler ◽  
C. Wimmer ◽  
D. Wünderlich

The neutral beam injection systems for the international fusion experiment ITER used for heating, current drive, and diagnostic purposes are based on RF-driven negative hydrogen ion sources with a source area of roughly 0.9 m × 1.9 m. The sources operate at 0.3 Pa in hydrogen and in deuterium using a total available RF generator power of 800 kW per source at a frequency of 1 MHz. In order to fulfill the challenging requirements for ITER and beyond (like a DEMOnstration power plant, DEMO), worldwide developments are underway addressing the topics of plasma generation, ion extraction together with the issue of reducing and stabilizing the co-extracted electron current, and the beam properties. At the example of the activities at the ITER prototype source and the size scaling experiment ELISE, the present status and its challenges are summarized. The RF power transfer efficiency of these sources is only about 65% in maximum, giving significant room for improvements to relax the demands on the RF generator and ensure reliable operation. The plasma uniformity in front of the large extraction system is the result of plasma drifts. They have a huge impact on the nonuniformity of the co-extracted electrons and influence the ions and thus the beam properties as well. Understanding the optics of such large beams composed of hundreds of beamlets is a crucial task and is under continuous improvement. The main challenge, however, is still the fulfillment of the ITER requirements for deuterium, in particular, for long pulses. The management of caesium, which is evaporated into the source to generate sufficient negative ions by the surface conversion process, is one of the keys for stable and reliable operation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yisel Martinez Palenzuela ◽  
Vincent Barozier ◽  
Eric Chevallay ◽  
Thomas E. Cocolios ◽  
Charlotte Duchemin ◽  
...  

CERN-MEDICIS is an off-line isotope separator facility for the extraction of radioisotopes from irradiated targets of interest to medical applications. The beamline, between the ion source and the collection chamber, consists of ion extraction and focusing elements, and a dipole magnet mass spectrometer recovered from the LISOL facility in Louvain-la-Neuve. The latter has been modified for compatibility with MEDICIS, including the installation of a window for injecting laser light into the ion source for resonance photo-ionization. Ion beam optics and magnetic field modeling using SIMION and OPERA respectively were performed for the design and characterization of the beamline. The individual components and their optimal configuration in terms of ion beam extraction, mass separation, and ion transport efficiency is described, along with details of the commissioning and initial performance assessment with stable ion beams.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seiji Kumagai ◽  
Yusuke Abe ◽  
Masahiro Tomioka ◽  
Mahmudul Kabir

AbstractRice husk (RH) is a globally abundant and sustainable bioresource composed of lignocellulose and inorganic components, the majority of which consist of silicon oxides (approximately 20% w/w in dried RH). In this work, a RH-derived C/SiOx composite (RHC) was prepared by carbonization at 1000 °C for use in Li-ion battery anodes. To find a suitable binder for RHC, the RHC-based electrodes were fabricated using two different contemporary aqueous binders: polyacrylic acid (PAA) and a combination of carboxymethyl cellulose and styrene butadiene rubber (CMC/SBR). The rate and cycling performances of the RHC electrodes with respect to the insertion/extraction of Li ions were evaluated in a half-cell configuration. The cell was shorted for 24 h to completely lithiate the RHC. Impedance analysis was conducted to identify the source of the increase in the resistance of the RHC electrodes. The RHC electrode fabricated using PAA exhibited higher specific capacity for Li-ion extraction during the cycling test. The PAA binder strengthened the electrode and alleviated the increase in electrode resistance caused by the formation of the interphase film. The high affinity of PAA for SiOx in RHC was responsible for the stabilization of the anodic performance of Li-ion batteries.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 189
Author(s):  
Victoria V. Svotina ◽  
Andrey I. Mogulkin ◽  
Alexandra Y. Kupreeva

The main purpose of this work is to conduct ground development testing of the ion source intended for use the space debris contactless transportation system. In order to substantiate the operating capability of the developed ion source, its thermal and thermomechanical simulation was carried out. The ion source thermal model should verify the ion source operating capability under thermal loading conditions, and demonstrate the conditions for ion source interfacing with the systems of the service spacecraft with the ion source installed as a payload. The mechanical and mathematical simulation for deformation of the ion source ion-extraction system profiled electrodes under thermal loading in conjunction with the prediction of the strained state based on the numerical simulation of the ion source ion-extraction system units, making it possible to ensure the stability of the ion source performance. Good agreement between the thermal and thermo-mechanical ion source simulation results and experimental data has been demonstrated. It is shown that the developed ion source will be functional in outer space and can be used as an element of the space debris contactless transportation system into graveyard orbits.


Author(s):  
Xiaofeng Zhang ◽  
Feng Zheng ◽  
Tie-Yu Lü ◽  
Shunqing Wu ◽  
Zizhong Zhu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document