scholarly journals A Dual-Output Reconfigurable Shared-Inductor Boost-Converter/Current-Mode Inductive Power Management ASIC With 750% Extended Output-Power Range, Adaptive Switching Control, and Voltage-Power Regulation

2019 ◽  
Vol 13 (5) ◽  
pp. 1075-1086 ◽  
Author(s):  
Hesam Sadeghi Gougheri ◽  
Philip Graybill ◽  
Mehdi Kiani
2018 ◽  
Vol 7 (2) ◽  
pp. 161-168
Author(s):  
Roskhatijah Radzuan ◽  
Mohd Khairul Mohd Salleh ◽  
Nuha A. Rhaffor ◽  
Shukri Korakkottil Kunhi Mohd

Existing works on battery-less of energy harvesting systems often assume as a high efficiency of rectifier circuit for power management system. In practice, rectifier circuit often varies with output power and circuit complexity. In this paper, based on a review of existing rectifier circuits for the energy harvesters in the literature, an integrated rectifier with boost converter for output power enhancement and complexity reduction of power management system is implemented through 0.18-micron CMOS process. Based on this topology and technology, low threshold-voltage of MOSFETs is used instead of diodes in order to reduce the power losses of the integrated rectifier circuit. Besides, a single switch with the duty-cycle control is introduced to reduce the complexities of the integrated boost converter. Measurement results show that the realistic performances of the rectifier circuit could be considerably improved based on the performances showed by the existing study.


Author(s):  
Gang Li ◽  
Binren Zhang

Background: Electromagnetic detection is an important method of geophysical exploration. The transmitting system is an important part of the electromagnetic detection equipment. Methods: The general topologies of a transmitting system for EM instrument are analyzed. The basic principle of EM detection is interpreted. In order to improve the output power and give consideration to the dynamic performance, an electromagnetic transmitting system based on the tri-state boost converter is proposed in this paper. Results: The principle of the proposed transmitting system is analyzed. The topology of the proposed transmitting system is illustrated and the working modes of tri-state boost converter are given. Conclusion: The simulation model is established and the simulation experiment is carried out to verify the feasibility of the new electromagnetic transmitting system.


2021 ◽  
Vol 110 ◽  
pp. 102587
Author(s):  
Dazhou Geng ◽  
Yang Zheng ◽  
Qijuan Chen ◽  
Xuhui Yue ◽  
Donglin Yan

Sign in / Sign up

Export Citation Format

Share Document