The influence of model parameters on EEG/MEG single dipole source estimation

1987 ◽  
Vol BME-34 (4) ◽  
pp. 289-296 ◽  
Author(s):  
Cees J. Stok
2021 ◽  
Author(s):  
Zhengguang Liu ◽  
Zhengyong Ren ◽  
Jingtian Tang ◽  
Huang Chen

<p>    There is a significant interest in improving the efficiency of 3-D CSEM inversion and obtaining more reliable inversion results. A 3-D CSEM inversion code using unstructured tetrahedral elements has been developed in order to consider the topographic effect by directly incorporating it into computational grids. In the forward modeling, the electric dipole source is divided into a set of short electric dipoles to simulate its practical shape, size and attitude. We adopt the edge-based finite-element method to discretize the electric field equation. In the inversion, the inversion grids are entirely independent of the forward grids. The lower and upper bounding constraints on model parameters are used to improve the reliability of the inversion result further. We use the Gauss-Newton algorithm to minimize the inversion objective function and obtain the underground conductivity model. The calculation of the forward modeling and the sensitivity matrix spends most of the time in the inversion. At present, most inversion codes use frequency-based parallel methods to accelerate the inversion, to further improve the efficiency of 3D CSEM inversion, except for the frequency-based parallel methods, we use the open-source software METIS to divide the model into several parts and then use the MPI-based parallel toolkits (such as PETSc and MUMPS) to solve the forward linear equations. The same parallel scheme can also be used to calculate the sensitivity matrix. Finally, we can further improve the efficiency of 3-D CSEM inversion by the dual parallel strategy based on the frequency and domain decomposition.</p>


2013 ◽  
Vol 13 (11) ◽  
pp. 5473-5488 ◽  
Author(s):  
S. M. Burrows ◽  
P. J. Rayner ◽  
T. Butler ◽  
M. G. Lawrence

Abstract. Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC). Source estimation via Markov Chain Monte Carlo is applied to a suite of sensitivity simulations, and the global mean emissions are estimated for the example problem of bacteria-containing aerosol particles. We present an analysis of the uncertainties in the global mean emissions, and a partitioning of the uncertainties that are attributable to particle size, activity as cloud condensation nuclei (CCN), the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. For this example, uncertainty due to CCN activity or to a 1 μm error in particle size is typically between 10% and 40% of the uncertainty due to observation uncertainty, as measured by the 5–95th percentile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mixed-phase clouds is as high as 10–20% of that attributable to observation uncertainty. Taken together, the four model parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the observations. This was a surprisingly large contribution from model uncertainty in light of the substantial observation uncertainty, which ranges from 81–870% of the mean for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol particles should be treated explicitly and systematically in both forward and inverse modelling studies.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. E341-E351 ◽  
Author(s):  
Andrei Swidinsky

The frequency-domain electromagnetic response of a confined conductor buried in a resistive host has received much attention, particularly in the context of mineral exploration. In contrast, the problem of the electromagnetic response of a confined resistor buried in a conductive host has been less thoroughly studied. However, resistive targets are important in geotechnical and hydrologic studies, archaeological prospecting, and, more recently, offshore hydrocarbon exploration. I analytically address the problem of the electromagnetic response of a completely resistive cylindrical cavity buried in a conductive host in the presence of a simplified 2D electric dipole source. In contrast to the confined conductor, which channels and induces current systems, the confined resistor deflects current and produces additional eddy current systems in the conductive host. I apply this theory to model the response of a grounded electric dipole-dipole system operating over a range of frequencies from 0 Hz to 10 kHz, in the presence of a horizontal 5-m radius insulating cylinder located 1-m beneath the surface of a uniform earth. This represents a common hazard encountered during mining and civil engineering operations. Results show that such an insulating cavity increases the recorded electric field amplitude and phase delay at all transmitted frequencies. These observations suggest that a broadband electromagnetic prospecting system may provide additional information about the location and extent of a void, over and above a standard dipole-dipole resistivity survey. When the host skin depth is much larger than all other length scales, the response can be approximated by an equivalent single dipole unless the cylinder’s radius is much larger than its distance from the transmitter. This result provids a useful rule of thumb to determine the acceptable range over which a resistive target can be modeled by a distribution of dipoles.


Sign in / Sign up

Export Citation Format

Share Document