Integrated Coverage and Connectivity in Wireless Sensor Networks: A Two-Dimensional Percolation Problem

2008 ◽  
Vol 57 (10) ◽  
pp. 1423-1434 ◽  
Author(s):  
Habib M. Ammari ◽  
Sajal K. Das
Author(s):  
Habib M. Ammari ◽  
Amer Ahmed

A wireless sensor network is a collection of sensor nodes that have the ability to sense phenomena in a given environment and collect data, perform computation on the gathered data, and transmit (or forward) it to their destination. Unfortunately, these sensor nodes have limited power, computational, and storage capabilities. These factors have an influence on the design of wireless sensor networks and make it more challenging. In order to overcome these limitations, various power management techniques and energy-efficient protocols have been designed. Among such techniques and protocols, geographic routing is one of the most efficient ways to solve some of the design issues. Geographic routing in wireless sensor networks uses location information of the sensor nodes to define a path from source to destination without having to build a network topology. In this paper, we present a survey of the existing geographic routing techniques both in two-dimensional (2D) and three-dimensional (3D) spaces. Furthermore, we will study the advantages of each routing technique and provide a discussion based on their practical possibility of deployment.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 28940-28954 ◽  
Author(s):  
Mohammed Farsi ◽  
Mostafa A. Elhosseini ◽  
Mahmoud Badawy ◽  
Hesham Arafat Ali ◽  
Hanaa Zain Eldin

2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Shukui Zhang ◽  
Hao Chen ◽  
Qiaoming Zhu ◽  
Juncheng Jia

The event detection is one of the fundamental researches in wireless sensor networks (WSNs). Due to the consideration of various properties that reflect events status, the Composite event is more consistent with the objective world. Thus, the research of the Composite event becomes more realistic. In this paper, we analyze the characteristics of the Composite event; then we propose a criterion to determine the area of the Composite event and put forward a dominating set based network topology construction algorithm under random deployment. For the unreliability of partial data in detection process and fuzziness of the event definitions in nature, we propose a cluster-based two-dimensionalτ-GAS algorithm and fuzzy-decision based composite event decision mechanism. In the case that the sensory data of most nodes are normal, the two-dimensionalτ-GAS algorithm can filter the fault node data effectively and reduce the influence of erroneous data on the event determination. The Composite event judgment mechanism which is based on fuzzy-decision holds the superiority of the fuzzy-logic based algorithm; moreover, it does not need the support of a huge rule base and its computational complexity is small. Compared to CollECT algorithm and CDS algorithm, this algorithm improves the detection accuracy and reduces the traffic.


Sign in / Sign up

Export Citation Format

Share Document