A Methodology to Predict the Impact of Substrate Noise in Analog/RF Systems

Author(s):  
S. Bronckers ◽  
K. Scheir ◽  
G. Van der Plas ◽  
G. Vandersteen ◽  
Y. Rolain
2021 ◽  
Author(s):  
Hoang Le ◽  
Thang Nguyen

<p>This paper addresses the design of hybrid free-space optical/radio frequency (FSO/RF) systems for a high-altitude platform (HAP)-aided relaying satellite communication for mobile networks supported by unmanned aerial vehicle (UAV). While prior work primarily focused on fixed-rate design, which frequently switches between FSO and RF lead to reduce the system performance, we propose a rate adaptation design that gradually adjusts the data rate in each link when its channel state fluctuates. The proposed design's downlink performance is analyzed, taking into account many challenging issues, including beam spreading loss, cloud attenuation, statistical behaviors of the atmospheric turbulence in the dual-hop channel, and pointing misalignment due to the UAV hovering. Different performance metrics are analytically derived based on channel modelings, such as outage probability, average transmission rate, achievable spectrum efficiency, and average transmission rate. The numerical results quantitatively confirm the effectiveness of our proposed system under the impact of UAV hovering misalignment and atmospheric-related issues like clouds and turbulence. Finally, Monte-Carlo simulations validate the accuracy of theoretical results.</p>


2002 ◽  
Vol 02 (02) ◽  
pp. L109-L116 ◽  
Author(s):  
SERGIO SPEDO ◽  
CLAUDIO FIEGNA

In this work, hydrodynamic device simulations and a post-processor for the simulation of noise in MOSFETs are applied in order to evaluate the impact of scaling on the thermal noise of transistors representative of technologies with minimum gate length scaled from 0.25 μm down to 0.1 μm. The dependences on bias and technology scaling of the spectral densities of the equivalent drain- and induced gate-noise currents are anayzed in details. The effect of technology scaling on the two-port noise parameters of the intrinsic MOSFET is studied as well. The results of this work confirm that the transistor's noise performance tend to improve as the technology is scaled down, making CMOS a suitable technological option for the implementation of advanced low-power RF systems.


2021 ◽  
Author(s):  
Hoang Le ◽  
Thang Nguyen

<p>This paper addresses the design of hybrid free-space optical/radio frequency (FSO/RF) systems for a high-altitude platform (HAP)-aided relaying satellite communication for mobile networks supported by unmanned aerial vehicle (UAV). While prior work primarily focused on fixed-rate design, which frequently switches between FSO and RF lead to reduce the system performance, we propose a rate adaptation design that gradually adjusts the data rate in each link when its channel state fluctuates. The proposed design's downlink performance is analyzed, taking into account many challenging issues, including beam spreading loss, cloud attenuation, statistical behaviors of the atmospheric turbulence in the dual-hop channel, and pointing misalignment due to the UAV hovering. Different performance metrics are analytically derived based on channel modelings, such as outage probability, average transmission rate, achievable spectrum efficiency, and average transmission rate. The numerical results quantitatively confirm the effectiveness of our proposed system under the impact of UAV hovering misalignment and atmospheric-related issues like clouds and turbulence. Finally, Monte-Carlo simulations validate the accuracy of theoretical results.</p>


2021 ◽  
Author(s):  
Hoang Le ◽  
Thang Nguyen

<p>This paper addresses the design of hybrid free-space optical/radio frequency (FSO/RF) systems for a high-altitude platform (HAP)-aided relaying satellite communication for mobile networks supported by unmanned aerial vehicle (UAV). While prior work primarily focused on fixed-rate design, which frequently switches between FSO and RF lead to reduce the system performance, we propose a rate adaptation design that gradually adjusts the data rate in each link when its channel state fluctuates. The proposed design's downlink performance is analyzed, taking into account many challenging issues, including beam spreading loss, cloud attenuation, statistical behaviors of the atmospheric turbulence in the dual-hop channel, and pointing misalignment due to the UAV hovering. Different performance metrics are analytically derived based on channel modelings, such as outage probability, average transmission rate, achievable spectrum efficiency, and average transmission rate. The numerical results quantitatively confirm the effectiveness of our proposed system under the impact of UAV hovering misalignment and atmospheric-related issues like clouds and turbulence. Finally, Monte-Carlo simulations validate the accuracy of theoretical results.</p>


Sign in / Sign up

Export Citation Format

Share Document