scholarly journals Distributed Fault-Tolerant Control of Large-Scale Systems: An Active Fault Diagnosis Approach

2020 ◽  
Vol 7 (1) ◽  
pp. 288-301 ◽  
Author(s):  
Francesca Boem ◽  
Alexander J. Gallo ◽  
Davide M. Raimondo ◽  
Thomas Parisini
2019 ◽  
Vol 9 (19) ◽  
pp. 4010 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

Fault-tolerant control is becoming an interesting topic because of its reliability and safety. This paper reports an active fault-tolerant control method for a quadcopter unmanned aerial vehicle (UAV) to handle actuator faults, disturbances, and input constraints. A robust fault diagnosis based on the H ∞ scheme was designed to estimate the magnitude of a time-varying fault in the presence of disturbances with unknown upper bounds. Once the fault estimation was complete, a fault-tolerant control scheme was proposed for the attitude system, using adaptive sliding mode backstepping control to accommodate the actuator faults, despite actuator saturation limitation and disturbances. The Lyapunov theory was applied to prove the robustness and stability of the closed-loop system under faulty operation. Simulation results show the effectiveness of the fault diagnosis scheme and proposed controller for handling actuator faults.


1989 ◽  
Author(s):  
George Vachtsevanos ◽  
Young-Tae Kim ◽  
Manolis Christodoulou

Author(s):  
Rongrong Wang ◽  
Junmin Wang

This paper presents an in-wheel motor fault diagnosis and fault-tolerant control method for four-wheel independently actuated (4WIA) electric vehicles. The 4WIA electric vehicle is one of the promising architectures for electric vehicles. While such a vehicle architecture greatly increases the flexibility for vehicle control, it also elevates the requirements on system reliability, safety, and fault tolerance due to the increased number of actuators. A fault diagnosis approach for finding the faulty in-wheel motor/motor driver pair is developed. The proposed diagnosis approach does not need an accurate knowledge on tire-road friction coefficient (TRFC) and is robust to tire force modeling inaccuracies. Based on the in-wheel motor/motor driver fault diagnosis mechanism, a control-allocation based vehicle fault-tolerant control system is designed to accommodate the in-wheel motor/motor driver fault by automatically allocating the control effort among other healthy wheels. Simulations using a high-fidelity, CarSim®, full-vehicle model show the effectiveness of the proposed in-wheel motor/motor driver fault diagnosis and fault-tolerant control approaches.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1139 ◽  
Author(s):  
Ngoc Nguyen ◽  
Sung Hong

Fault-tolerant control has drawn attention in recent years owning to its reliability and safe flight during missions. In this article, an active fault-tolerant control method is proposed to control a quadcopter in the presence of actuator faults and disturbances. Firstly, the dynamics of the quadcopter are presented. Secondly, a robust adaptive sliding mode Thau observer is presented to estimate the time-varying magnitudes of actuator faults. Thirdly, a fault-tolerant control scheme based on sliding mode control and reconfiguration technique is designed to maintain the quadcopter at the desired position despite the presence of faults. Unlike previous studies, the proposed method aims to integrate the fault diagnosis and a fault-tolerant control scheme into a single unit with total loss of actuator. Simulation results illustrate the efficiency of the suggested algorithm.


Sign in / Sign up

Export Citation Format

Share Document