Maximal perturbation bounds for the robust stability of fractional-order linear time-invariant parameter-dependent systems

Author(s):  
Ruo-Nan Qian ◽  
Jun-Guo Lu ◽  
Qing-Hao Zhang
Open Physics ◽  
2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Mojtaba Soorki ◽  
Mohammad Tavazoei

AbstractThis paper deals with fractional-order linear time invariant swarm systems. Necessary and sufficient conditions for asymptotic swarm stability of these systems are presented. Also, based on a time response analysis the speed of convergence in an asymptotically swarm stable fractional-order linear time invariant swarm system is investigated and compared with that of its integer-order counterpart. Numerical simulation results are presented to show the effectiveness of the paper results.


Author(s):  
Yang Quan Chen ◽  
Hyo-Sung Ahn ◽  
Dingyu¨ Xue

We consider uncertain fractional-order linear time invariant (FO-LTI) systems with interval coefficients. Our focus is on the robust controllability issue for interval FO-LTI systems in state-space form. We re-visited the controllability problem for the case when there is no interval uncertainty. It turns out that the stability check for FO-LTI systems amounts to checking the conventional integer order state space using the same state matrix A and the input coupling matrix B. Based on this fact, we further show that, for interval FO-LTI systems, the key is to check the linear dependency of a set of interval vectors. Illustrative examples are presented.


2006 ◽  
Vol 2006 ◽  
pp. 1-15 ◽  
Author(s):  
Hamid Reza Karimi

We focus on the issue of robust stabilization withH∞performance for a class of linear time-invariant parameter-dependent systems under norm-bounded nonlinear uncertainties. By combining the idea of polynomially parameter-dependent quadratic Lyapunov functions and linear matrix inequalities formulations, some parameter-independent conditions with high precision are given to guarantee robust asymptotic stability and robust disturbance attenuation of the linear time-invariant parameter-dependent system in the presence of norm-bounded nonlinear uncertainties. The parameter-dependent state-feedback control is designed based on the Hamilton-Jacobi-Isaac (HJI) method. The applicability of the proposed design method is illustrated in a simple example.


Sign in / Sign up

Export Citation Format

Share Document