scholarly journals Temperature effect on space charge dynamics in XLPE insulation

2007 ◽  
Vol 14 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Y.l. Chong ◽  
G. Chen ◽  
Y.f.f. Ho
Author(s):  
Nhet Ra ◽  
Hiroyuki Futami ◽  
Tomohiro Kawashima ◽  
Yoshinobu Murakami ◽  
Naohiro Hozumi ◽  
...  

Author(s):  
Zhijing Hu ◽  
Zi Wang ◽  
Yanlin Li ◽  
Tao Shen ◽  
Ming Yan ◽  
...  

Author(s):  
M.H.A. Wahab ◽  
N. A. M. Jamail ◽  
E. Sulaiman ◽  
Q.E. Kamarudin ◽  
N.A. Othman ◽  
...  

<p>Nowadays, XLPE cable has been widely used because it has better resistance than other cables. XLPE insulation has unique features including a high dielectric strength and high insulation resistance. A lot of researches based on hardware and software have been conducted to prove the effectiveness of XLPE cable such as AC and DC applications and Space Charge Distribution measurement under HVDC at High Temperature. This research focused on analysis of space charge and electric field on XLPE cable with effect of non-uniform contamination layer by using Quickfield Software. Non-uniform contaminations have been applied along XLPE cable using Arsenic Tribromide (AsBr3), Boron Bromide (BBr3), Ethylene Dichloride (CH2C1), Formic Acid (CH1O2), Formamide (CH3NO) and Alcohol element. Presence of these contamination elements represent of underground contamination. The size and layer of the contamination were non-uniform type. From the results, it is shown that lower dielectric constant of contamination will affect more on charge of XLPE insulation. As a conclusion, it can be seen lower dielectric constant value of contamination element greatly affecting the performance of XLPE insulation. Furthermore, size of contamination also influences the content of charge in contamination where the bigger the contamination size, the more charge contained in the contamination.</p>


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1836 ◽  
Author(s):  
Ik-Soo Kwon ◽  
Sun-Jin Kim ◽  
Mansoor Asif ◽  
Bang-Wook Lee

The influx of a switching impulse during DC steady-state operations causes severe electrical stress on the insulation of HVDC cables. Thus, the insulation should be designed to withstand a superimposed switching impulse. All major manufacturers of DC cables perform superimposed switching impulse breakdown tests for prequalification. However, an experimental approach to study space charge dynamics in dielectrics under a switching impulse superposed on DC voltage has not been reported yet. This is because, unlike the DC stress, it is not possible to study the charge dynamics experimentally under complex stresses, such as switching impulse superposition. Hence, in order to predict and investigate the breakdown characteristics, it is necessary to obtain accurate electric field distribution considering space charge dynamics using a numerical approach. Therefore, in this paper, a numerical study on the switching impulse superposition was carried out. The space charge dynamics and its distribution within the dielectric under DC stress were compared with those under a superimposed switching impulse using a bipolar charge transport (BCT) model. In addition, we estimated the effect of a superimposed switching impulse on a DC electric field distribution. It was concluded that the temperature conditions of dielectrics have a significant influence on electric field and space charge dynamics.


Sign in / Sign up

Export Citation Format

Share Document