scholarly journals Evaluation of Electric Field and Space Charge Dynamics in Dielectric under DC Voltage with Superimposed Switching Impulse

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1836 ◽  
Author(s):  
Ik-Soo Kwon ◽  
Sun-Jin Kim ◽  
Mansoor Asif ◽  
Bang-Wook Lee

The influx of a switching impulse during DC steady-state operations causes severe electrical stress on the insulation of HVDC cables. Thus, the insulation should be designed to withstand a superimposed switching impulse. All major manufacturers of DC cables perform superimposed switching impulse breakdown tests for prequalification. However, an experimental approach to study space charge dynamics in dielectrics under a switching impulse superposed on DC voltage has not been reported yet. This is because, unlike the DC stress, it is not possible to study the charge dynamics experimentally under complex stresses, such as switching impulse superposition. Hence, in order to predict and investigate the breakdown characteristics, it is necessary to obtain accurate electric field distribution considering space charge dynamics using a numerical approach. Therefore, in this paper, a numerical study on the switching impulse superposition was carried out. The space charge dynamics and its distribution within the dielectric under DC stress were compared with those under a superimposed switching impulse using a bipolar charge transport (BCT) model. In addition, we estimated the effect of a superimposed switching impulse on a DC electric field distribution. It was concluded that the temperature conditions of dielectrics have a significant influence on electric field and space charge dynamics.

2017 ◽  
Vol 7 (5) ◽  
pp. 1962-1966
Author(s):  
S. S. Desouky ◽  
A. Z. El-Dein ◽  
R. A. Abd El-Aal ◽  
N. A. A. El-Rahman

Ιn medium voltage cables, the stress control layers play an important part in controlling the electric field distribution around the medium voltage underground cable terminations. Underground cable accessories, used in medium voltage cable systems, need a stress control tube in order to maintain and control the insulation level which is designed for long life times. The term “electrical stress control” refers to the cable termination analysis of optimizing the electrical stress in the area of insulation shield cutback to reduce the electrical field concentration at this point in order to reduce breakdown in the cable insulation. This paper presents the effect of some materials of different relative permittivities and geometrical regulation with the curved shape stress relief cones on the electric field distribution of cable termination. The optimization was done by comparing the results of eight materials used. Also, the effect of the change in the thickness of the stress control tube is presented. The modeling design is very important for engineers to find the optimal solution of terminator design of medium voltage cables. This paper also describes the evolution of stress control systems and their benefits. A developed program using Finite Element Method (FEM) has calculated a numerical study to the stress control layering electric field distribution.


2011 ◽  
Vol 130-134 ◽  
pp. 1413-1417
Author(s):  
You Hua Gao ◽  
Guo Wei Liu ◽  
Yan Bin Li ◽  
You Feng Gao

Numerical calculation model with compound insulation of transient electric field is given. The insulation is more prominent due to complication for voltage applied on valve side winding of the converter transformer. So the simplied structure for electric calculation on the valve side winding of the converter transformer is established. The electric field distribution characteristics on the valve side winding of the converter transformer is analyzed and electric fields in different resistivity and permittivity are calculated under AC high voltage, DC high voltage, AC superimposed DC voltage, polarity reversal voltage. The maximum electric field intensity is calculated and analyzed under kinds of high voltage. Some important influence factors for electric field distribution are also discussed in this paper.


2021 ◽  
Author(s):  
Jiang Yueling ◽  
Dong Quanlin

Abstract In electron beam technology, the critical focus of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in a simulation, obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.


Sign in / Sign up

Export Citation Format

Share Document