Charge Transport Dynamics and Space Charge Accumulation in XLPE Composites with 2D Platelet Fillers for HVDC Cable Insulation

2021 ◽  
Vol 28 (1) ◽  
pp. 3-10
Author(s):  
Chao Wu ◽  
Mohamadreza Arab ◽  
JoAnne Ronzello ◽  
Yang Cao
2021 ◽  
pp. 107186
Author(s):  
Xiaozhen He ◽  
Ilkka Rytöluoto ◽  
Paolo Seri ◽  
Rafal Anyszka ◽  
Amirhossein Mahtabani ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2005
Author(s):  
Espen Doedens ◽  
E. Markus Jarvid ◽  
Raphaël Guffond ◽  
Yuriy V. Serdyuk

On-site installation of accessories on extruded polymeric high voltage cables in a common practice. The procedure requires the shaping of the physical interface between the cable insulation surface and the pre-molded accessory body. On such interfaces, rough surfaces should be avoided in order to limit space charge accumulation in the insulation, which affects the cable performance by reducing insulation life-time, creating conditions for local field enhancement, and, respectively, the formation of possible breakdown path e.g. by electrical treeing. Space charge measurements on cable insulation peelings were undertaken to assess the space charge injection and accumulation on interfaces with varying degrees of surface roughness in order to improve understanding on this subject. The results of the measurements confirm the hypothesis regarding the enhancement of charge injection from rough surfaces when electric field strength exceeds a certain level. The accumulated charge density in the material is shown to strongly depend on the field strength and temperature in both polarization and subsequent depolarization measurements. These results emphasize that a bipolar charge transport model that incorporates field and temperature dependencies of charge injection, trapping, detrapping, and recombination processes needs to be adopted to accurately describe the observed electric conduction phenomena.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5571
Author(s):  
Yifan Zhou ◽  
Wei Wang ◽  
Tailong Guo

One of the main issues that affect the development of high-voltage direct-current (HVDC) cable insulation is the accumulation of space charge. The load operation of an HVDC cable leads to the formation of a radially distributed temperature gradient (TG) across the insulation. In this study, the space charge accumulation in a cross-linked polyethylene (XLPE) cable is measured under a DC electric field and TG using the pulsed electro-acoustic (PEA) method, and the effect of the TG on the space charge behavior is investigated. In addition, the bipolar charge transport (BCT) model and the conductivity model based on an improved cylindrical geometry are used to simulate the charge behavior in the HVDC XLPE cable under TG, and the experimental and simulated results are compared. The results show that the higher temperature of the cable conductor promotes the accumulation of homocharge near the side of high temperature. Additionally, with the increase of the TG, not only does more heterocharge accumulates adjacent to the side of low temperature, but more space charge also extends into the bulk of the cable insulation. More attention should be paid to the conductor shield layer and the insulation shield layer in HVDC cables. Moreover, the BCT model can more accurately describe the experimental results than the conductivity model.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1750
Author(s):  
Espen Doedens ◽  
E. Markus Jarvid ◽  
Raphaël Guffond ◽  
Yuriy V. Serdyuk

Extruded high voltage direct current (HVDC) cable systems contain interfaces with poorly understood microscopic properties, particularly surface roughness. Modelling the effect of roughness on conduction in cable insulation is challenging, as the available results of macroscopic measurements give little information about microscopic charge distributions at material interfaces. In this work, macroscopic charge injection from interfaces is assessed by using a bipolar charge transport model, which is validated against a series of space charge measurements on cable peelings with different degrees of surface roughness. The electric field-dependent conduction and charge trapping effects stimulated by the injection current originating from rough surfaces are assessed. It is shown that by accounting for roughness enhanced charge injection with the parameters derived in part I of the paper, reasonable agreement between computed and measured results can be achieved at medium field strengths (10–40 kV/mm).


Sign in / Sign up

Export Citation Format

Share Document