Mode Mixity Dependence of Interfacial Fracture Toughness in Organic Electronic Structures

2014 ◽  
Vol 14 (1) ◽  
pp. 291-299 ◽  
Author(s):  
Tiffany M. Tong ◽  
Ting Tan ◽  
Nima Rahbar ◽  
Winston O. Soboyejo
Author(s):  
Jiantao Zheng ◽  
Suresh K. Sitaraman

Knowledge of the mode-mixity (?) dependent interfacial fracture toughness (Γ) is needed to predict the interface delamination and the component reliability of thin-film structures. Mode-mixity, ?, is a measure of the relative shearing to tensile opening of the interface crack near the tip. Typically, Γ increases as ? increases, such that the delamination is less likely when the loading on the interface is shear-dominated. The measurement of mode-mixity dependent Γ has been a challenge for thin film interfaces. The single-strip superlayer test, developed by the authors, eliminates the shortcomings of current testing methods. This test employs a stress-engineered superlayer to drive the interfacial delamination between the thin-film and the substrate. An innovative aspect of the proposed test is to introduce a release layer of varying width between the interested interfaces to control the amount of energy available for delamination propagation. By designing a decreasing area of the release layer, it is possible to arrest the interfacial delamination at a given location, and the interfacial fracture toughness or critical energy release rate can be found at the location where the delamination ceases to propagate. Design, preparation, and execution of the test are presented. Results are shown for Ti/Si interfaces of different mode mixities.


2013 ◽  
Vol 185 (1-2) ◽  
pp. 115-127 ◽  
Author(s):  
Hai T. Tran ◽  
M. Hossein Shirangi ◽  
Xiaolu Pang ◽  
Alex A. Volinsky

2007 ◽  
Vol 73 (735) ◽  
pp. 1266-1272 ◽  
Author(s):  
Yoshiaki NOMURA ◽  
Masaki NAGAI ◽  
Toru IKEDA ◽  
Noriyuki MIYAZAKI

2010 ◽  
Vol 25 (4) ◽  
pp. 641-647 ◽  
Author(s):  
Juan Meng ◽  
Argjenta Orana ◽  
Ting Tan ◽  
Kurt Wolf ◽  
Nima Rahbar ◽  
...  

This paper presents experimental and theoretical studies of the adhesion between the drug-eluting layer and a Parylene C primer layer in coatings present on a model drug-eluting stent. To quantify adhesion, Brazil nut sandwich specimens were prepared mimicking the layers of this coating. These samples were stressed to fracture, and the resulting initial cracks at the Parylene C/drug interface were used to measure the dependence of interfacial fracture energy of mode mixity. The mating fracture surfaces were then analyzed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The interfacial energy release rates were obtained over a wide variety of mode mixities. Adhesion and fracture mechanics models were then used to estimate the mode mixity dependency of interfacial fracture toughness. Fracture toughness was found to be larger under higher mode mixity than that under lower mixity and the analytical model showed close agreement with experimental results.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2225 ◽  
Author(s):  
Ikramullah ◽  
Samsul Rizal ◽  
Yoshikazu Nakai ◽  
Daiki Shiozawa ◽  
H.P.S. Abdul Khalil ◽  
...  

The aim of this paper is to evaluate the Mode II interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite by using a double shear stress method with 3 fibers model composite. The surface condition of the fiber and crack propagation at the interface between the fiber and the matrix are observed by scanning electron microscope (SEM). Alkali treatment on Typha spp. fiber can make the fiber surface coarser, thus increasing the value of interfacial fracture toughness and interfacial shear strength. Typha spp. fiber/epoxy has a higher interfacial fracture value than that of Typha spp. fiber/PLLA. Interfacial fracture toughness on Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite model specimens were influenced by the matrix length, fiber spacing, fiber diameter and bonding area. Furthermore, the interfacial fracture toughness and the interfacial fracture shear stress of the composite model increased with the increasing duration of the surface treatment.


Sign in / Sign up

Export Citation Format

Share Document