The state of the art in Japan's telecommunications energy systems-Strategy for Total Power Management

Author(s):  
S. Muroyama
Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 480 ◽  
Author(s):  
Andrea Ballo ◽  
Alfio Dario Grasso ◽  
Gaetano Palumbo

With the aim of providing designer guidelines for choosing the most suitable solution, according to the given design specifications, in this paper a review of charge pump (CP) topologies for the power management of Internet of Things (IoT) nodes is presented. Power management of IoT nodes represents a challenging task, especially when the output of the energy harvester is in the order of few hundreds of millivolts. In these applications, the power management section can be profitably implemented, exploiting CPs. Indeed, presently, many different CP topologies have been presented in literature. Finally, a data-driven comparison is also provided, allowing for quantitative insight into the state-of-the-art of integrated CPs.


2019 ◽  
Vol 2 (4) ◽  
pp. 34
Author(s):  
Agis G. Koumentakos

The maritime industry, among all other industries, is being forced to gradually reduce its emissions. Legislation is one of the tools applying this pressure, and from 1 January 2020, it focuses on the reduction of sulfur percentage in the heavy fuel oil (HFO)-powered vessels to 0.5%. In the beginning of this paper, the harmful environmental contribution of the naval sector is presented, along with the current legislation. The maritime industry is in a transitional stage, diverging from fossil fuels through alternative technologies and fuels, aiming to become over the long term a zero-emission industry. However, there are many implemented technologies, mostly of a mechanical nature, that already improve the efficiency of vessels and indirectly reduce their emissions. Such technologies include shaft generators (SGs), scrubbers, etc. The aim is for alternative fuels and technologies such as solar and wind to be implemented, too. Such technologies, when combined with the advantages of digitalization and automation, can further reduce emissions toward zero-emission vessels (ZEVs) through integrated systems. The present paper serves the purpose of a common point of gathering, addressing, and explaining the latest updates, previous achievements, and future targets of the maritime sector. The very nature of the subject—electric propulsion in the maritime sector—makes it very difficult to find sufficient and trustworthy data. There are two main reasons for this problem. The first one is that electric vehicles became commercial at a large scale (electric cars) very recently, and are still in a transitional stage. The second reason is that the maritime industry is very competitive; therefore, state-of-the-art technologies and data that give each company the lead are rarely published, and when they do, it happens very discreetly. In the quantitative part of the paper, where the photovoltaic (PV) and battery system calculations take place, there is no use of a specific model rather than a simplified approach. The purpose of the calculations is to show that with the present technologies, a purely solar-powered commercial vessel (such as RoRo, passenger, etc.) is technically impossible, and that there could be only a small contribution—of around 7%—to the electricity needs of a roll-on/roll-off (RoRo)-passenger ship. The state of the art finds a very short number of vessels that already use battery propulsion, but is expected to increase in the upcoming years. The present paper not only presents an overview of the state-of-the-art achievements in the electric propulsion of vessels, it also considers the exploitation of the continuous growth that the battery market is facing. As stated before, batteries are on the up, and this is due to the emerging need for energy storage in electricity grids that depend increasingly on renewable energy sources (RES). The paper makes a first consideration about the feasibility and possible benefits of implementing grid-like battery systems on-board vessels. In such a scenario, vessels would acquire significantly bigger energy capacity, allowing greater travel distances, a possible contribution of 44% of the vessel’s total power requirements (propulsion included), and a surplus as far as electricity requirements are concerned. There is also the more futuristic long-term scenario where Green Ports would charge vessels purely from RES dedicated to the port’s needs. The last part of the paper contains a qualitative assessment about the possible impacts that a battery-powered maritime industry could have.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2724
Author(s):  
Nandakishor Yadav ◽  
Youngbae Kim ◽  
Shuai Li ◽  
Kyuwon Ken Choi

The machine learning and convolutional neural network (CNN)-based intelligent artificial accelerator needs significant parallel data processing from the cache memory. The separate read port is mostly used to design built-in computational memory (CRAM) to reduce the data processing bottleneck. This memory uses multi-port reading and writing operations, which reduces stability and reliability. In this paper, we proposed a self-adaptive 12T SRAM cell to increase the read stability for multi-port operation. The self-adaptive technique increases stability and reliability. We increased the read stability by refreshing the storing node in the read mode of operation. The proposed technique also prevents the bit-interleaving problem. Further, we offered a butterfly-inspired SRAM bank to increase the performance and reduce the power dissipation. The proposed SRAM saves 12% more total power than the state-of-the-art 12T SRAM cell-based SRAM. We improve the write performance by 28.15% compared with the state-of-the-art 12T SRAM design. The total area overhead of the proposed architecture compared to the conventional 6T SRAM cell-based SRAM is only 1.9 times larger than the 6T SRAM cell.


Author(s):  
Vahid M Nik ◽  
A T D Perera ◽  
Deliang Chen

Abstract Climate change and increased urban population are two major concerns for society. Moving towards more sustainable energy solutions in the urban context by integrating renewable energy technologies supports decarbonizing the energy sector and climate change mitigation. A successful transition also needs adequate consideration of climate change including extreme events to ensure the reliable performance of energy systems in the long run. This review provides an overview of and insight into the progress achieved in the energy sector to adapt to climate change, focusing on the climate resilience of urban energy systems. The state-of-the-art methodology to assess impacts of climate change including extreme events and uncertainties on the design and performance of energy systems is described and discussed. Climate resilience is an emerging concept that is increasingly used to represent the durability and stable performance of energy systems against extreme climate events. However, it has not yet been adequately explored and widely used, as its definition has not been clearly articulated and assessment is mostly based on qualitative aspects. This study reveals that a major limitation in the state-of-the-art is the inadequacy of climate change adaptation approaches in designing and preparing urban energy systems to satisfactorily address plausible extreme climate events. Furthermore, the complexity of the climate and energy models and the mismatch between their temporal and spatial resolutions are the major limitations in linking these models. Therefore, few studies have focused on the design and operation of urban energy infrastructure in terms of climate resilience. Considering the occurrence of extreme climate events and increasing demand for implementing climate adaptation strategies, the study highlights the importance of improving energy system models to consider future climate variations including extreme events to identify climate resilient energy transition pathways.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 98887-98909
Author(s):  
Jun He ◽  
Zhijun Yuan ◽  
Xiaoling Yang ◽  
Wentao Huang ◽  
Yicong Tu ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1956
Author(s):  
Salvatore Vasta

Nowadays, thermal energy storage (TES) is gaining a crucial role in the development of highly efficient thermal energy systems [...]


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


2003 ◽  
Vol 48 (6) ◽  
pp. 826-829 ◽  
Author(s):  
Eric Amsel
Keyword(s):  

1968 ◽  
Vol 13 (9) ◽  
pp. 479-480
Author(s):  
LEWIS PETRINOVICH
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document