Design of Spoof Surface Plasmon Polariton-based Sensor for Low Dielectric Constant Liquid Samples

Author(s):  
Ivana Podunavac ◽  
Vasa Radonic ◽  
Vesna Bengin ◽  
Nikolina Jankovic
Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 3965-3975 ◽  
Author(s):  
Dmitry Yu. Fedyanin ◽  
Alexey V. Krasavin ◽  
Aleksey V. Arsenin ◽  
Anatoly V. Zayats

AbstractPlasmonics offers a unique opportunity to break the diffraction limit of light and bring photonic devices to the nanoscale. As the most prominent example, an integrated nanolaser is a key to truly nanoscale photonic circuits required for optical communication, sensing applications and high-density data storage. Here, we develop a concept of an electrically driven subwavelength surface-plasmon-polariton nanolaser, which is based on a novel amplification scheme, with all linear dimensions smaller than the operational free-space wavelength λ and a mode volume of under λ3/30. The proposed pumping approach is based on a double-heterostructure tunneling Schottky barrier diode and gives the possibility to reduce the physical size of the device and ensure in-plane emission so that the nanolaser output can be naturally coupled to a plasmonic or nanophotonic waveguide circuitry. With the high energy efficiency (8% at 300 K and 37% at 150 K), the output power of up to 100 μW and the ability to operate at room temperature, the proposed surface plasmon polariton nanolaser opens up new avenues in diverse application areas, ranging from ultrawideband optical communication on a chip to low-power nonlinear photonics, coherent nanospectroscopy, and single-molecule biosensing.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 975-982
Author(s):  
Huanhuan Su ◽  
Shan Wu ◽  
Yuhan Yang ◽  
Qing Leng ◽  
Lei Huang ◽  
...  

AbstractPlasmonic nanostructures have garnered tremendous interest in enhanced light–matter interaction because of their unique capability of extreme field confinement in nanoscale, especially beneficial for boosting the photoluminescence (PL) signals of weak light–matter interaction materials such as transition metal dichalcogenides atomic crystals. Here we report the surface plasmon polariton (SPP)-assisted PL enhancement of MoS2 monolayer via a suspended periodic metallic (SPM) structure. Without involving metallic nanoparticle–based plasmonic geometries, the SPM structure can enable more than two orders of magnitude PL enhancement. Systematic analysis unravels the underlying physics of the pronounced enhancement to two primary plasmonic effects: concentrated local field of SPP enabled excitation rate increment (45.2) as well as the quantum yield amplification (5.4 times) by the SPM nanostructure, overwhelming most of the nanoparticle-based geometries reported thus far. Our results provide a powerful way to boost two-dimensional exciton emission by plasmonic effects which may shed light on the on-chip photonic integration of 2D materials.


1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


Sign in / Sign up

Export Citation Format

Share Document