Sandwich-Layered Dielectric Film with Intrinsically Excellent Adhesion, Low Dielectric Constant, and Ultralow Dielectric Loss for a High-Frequency Flexible Printed Circuit

Author(s):  
Yang Zhang ◽  
Zhiyu Liu ◽  
Xianlong Zhang ◽  
Shaoyun Guo
2018 ◽  
Vol 2018 (1) ◽  
pp. 000476-000482 ◽  
Author(s):  
Masao Tomikawa ◽  
Hitoshi Araki ◽  
Yohei Kiuchi ◽  
Akira Shimada

Abstract Progress of 5G telecommunication and mm radar for autopilot, high frequency operation is required. Insulator materials having low loss at high frequency is desired for the applications. We designed the low dielectric constant, and low dielectric loss materials examined molecular structure of the polyimide and found that permittivity 2.6 at 20GHz, dielectric loss 0.002. Furthermore, in consideration of mechanical properties such as the toughness and adhesion to copper from a point of practical use. Dielectric properties largely turned worse when giving photosensitivity. To overcome the poor dielectric properties, we designed the photosensitive system. After all, we successfully obtained 3.5 of dielectric constant and 0.004 of dielectric loss, and 100% of elongation at break. In addition, we offered a B stage sheet as well as varnish. These materials are applicable to re-distribution layer of FO-WLP, Interposer and other RF applications for microelectronics.


2020 ◽  
Vol 11 (38) ◽  
pp. 6163-6170
Author(s):  
Fengping Liu ◽  
Xingrong Chen ◽  
Linxuan Fang ◽  
Jing Sun ◽  
Qiang Fang

Two new CF3-containing polysiloxanes with low dielectric constant (Dk) and dielectric loss (Df ) at a high frequency of 5 GHz were reported. The sample with two −CF3 groups exhibits better dielectric properties with Dk of 2.53 and ultralow Df of 1.66 × 10−3.


RSC Advances ◽  
2018 ◽  
Vol 8 (14) ◽  
pp. 7753-7760 ◽  
Author(s):  
Handong Sun ◽  
Yunxia Lv ◽  
Chongyang Zhang ◽  
Xiaodan Zuo ◽  
Mengzhu Li ◽  
...  

Introducing long carbon–fluorine bonds into the polymer chain produced comb-shaped PEEK possessing a low dielectric constant (2.73) and low dielectric loss (3.00 × 10−3).


1996 ◽  
Vol 443 ◽  
Author(s):  
Raymond N. Vrtis ◽  
Kelly A. Heap ◽  
William F. Burgoyne ◽  
Lloyd M. Robeson

AbstractPoly(arylene ethers)s are low dielectric constant organic spin on materials. PAE-2, which is a non-fluorinated poly(arylene ether), exhibits a dielectric constant below 3.0, thermal stability greater than 425 °C as well as excellent adhesion to Si, SiO2, and Al. These are the major atributes which makes it a very attractive candidate for integration as an interlevel or inter-metal dielectric material (ILD). Material properties including dielectric constant, thermal stability, moisture absorption, and mechanical analysis will be discussed.


2021 ◽  
Vol 2021 (HiTEC) ◽  
pp. 000105-000111
Author(s):  
Ellen Tormey ◽  
Chao Ma ◽  
John Maloney ◽  
Bradford Smith ◽  
Sid Sridharan ◽  
...  

Abstract Low dielectric constant/low loss LTCC materials have drawn much attention with the emergence of 5G wireless telecommunications. LTCC offers unique properties in the millimeter wave frequency range. The low dielectric constant and dielectric loss enable low latency devices with enhanced performance. To meet the market demands of higher performance and lower cost, Ferro has developed a new M7 LTCC/Ag cofireable system suitable for antenna in 5G and other high frequency applications. M7 LTCC ceramic green tape and cofireable Ag conductors have been developed and tested. Properties of the LTCC/Ag system are included herein including high frequency dielectric properties.


2007 ◽  
Vol 280-283 ◽  
pp. 85-88
Author(s):  
Lin Hu ◽  
He Ping Zhou ◽  
Hao Xue ◽  
Chun Lai Xu

Barium strontium titanium oxide (BSTO) has great advantages and potentiality for the application of microwave technology. In order to be used in phased array antennas, high dielectric tunability, relatively low dielectric constant and low dielectric loss are required. In this paper, MgO was mixed into BSTO and the microstructure and dielectric properties of MgO-mixed BSTO bulk ceramics were investigated. The mole ratio of Ba and Sr was rather fixed to 5:5 in this study. It is observed that a small amount of MgO (5 wt%) has gone beyond the solubility limits of Mg in BSTO. The dielectric constant and dielectric loss of BSTO ceramics decreased with the increase of the content of MgO mixed. However, the tunability of MgO-mixed BSTO ceramics decreased at the same time. 20wt% MgO-mixed BSTO ceramics exhibits preferable dielectric properties with acceptable tunability.


Sign in / Sign up

Export Citation Format

Share Document