2011 ◽  
Vol 320 ◽  
pp. 616-619
Author(s):  
Yuan Luo ◽  
Yu Xie

An approach of hand gesture recognition, setting the orientation histogram of the picture as the characteristic vector of hand gesture, is discussed in this paper. It can decrease the influence of light changes during the process of recognition effectively. A gesture-Driven system for intelligent wheelchairs is also introduced in the paper. Experimental results show that the method is robust and accurate.


2018 ◽  
Vol 7 (4.6) ◽  
pp. 299
Author(s):  
G. N. Balaji ◽  
S. V. Suryanarayana ◽  
C. Veeramani

Hand gesture recognition plays a vital role in numerous applications, which can run from mobile phones to 3D analysis of anatomy and from gaming to medicinal science. In a large portion of research applications and current business hand gestures recognition, has been implemented by utilizing either vision based or sensor-based gloves strategies where hues, paperclips of synthetic substances are used on to capture the gestures. Another essential issue associated with vision-based procedures is illuminated conditions. The threshold used for the segmentation is changed based on the light variations. A system is proposed in this paper, which extracts the gesture part from the hand image by preprocessing, followed by extraction of orientation histogram based feature is done. Further, in order to recognize the gestures, the extracted HOG feature vectors are provide for support vector machine (SVM). The proposed system is tested with 84 images and it outperforms with an accuracy of 94.04%.  


2018 ◽  
Vol 7 (4.6) ◽  
pp. 299
Author(s):  
G. N. Balaji ◽  
S. V. Suryanarayana ◽  
C. Veeramani

Hand gesture recognition plays a vital role in numerous applications, which can run from mobile phones to 3D analysis of anatomy and from gaming to medicinal science. In a large portion of research applications and current business hand gestures recognition, has been implemented by utilizing either vision based or sensor-based gloves strategies where hues, paperclips of synthetic substances are used on to capture the gestures. Another essential issue associated with vision-based procedures is illuminated conditions. The threshold used for the segmentation is changed based on the light variations. A system is proposed in this paper, which extracts the gesture part from the hand image by preprocessing, followed by extraction of orientation histogram based feature is done. Further, in order to recognize the gestures, the extracted HOG feature vectors are provide for support vector machine (SVM). The proposed system is tested with 84 images and it outperforms with an accuracy of 94.04%.  


2020 ◽  
Vol 17 (4) ◽  
pp. 497-506
Author(s):  
Sunil Patel ◽  
Ramji Makwana

Automatic classification of dynamic hand gesture is challenging due to the large diversity in a different class of gesture, Low resolution, and it is performed by finger. Due to a number of challenges many researchers focus on this area. Recently deep neural network can be used for implicit feature extraction and Soft Max layer is used for classification. In this paper, we propose a method based on a two-dimensional convolutional neural network that performs detection and classification of hand gesture simultaneously from multimodal Red, Green, Blue, Depth (RGBD) and Optical flow Data and passes this feature to Long-Short Term Memory (LSTM) recurrent network for frame-to-frame probability generation with Connectionist Temporal Classification (CTC) network for loss calculation. We have calculated an optical flow from Red, Green, Blue (RGB) data for getting proper motion information present in the video. CTC model is used to efficiently evaluate all possible alignment of hand gesture via dynamic programming and check consistency via frame-to-frame for the visual similarity of hand gesture in the unsegmented input stream. CTC network finds the most probable sequence of a frame for a class of gesture. The frame with the highest probability value is selected from the CTC network by max decoding. This entire CTC network is trained end-to-end with calculating CTC loss for recognition of the gesture. We have used challenging Vision for Intelligent Vehicles and Applications (VIVA) dataset for dynamic hand gesture recognition captured with RGB and Depth data. On this VIVA dataset, our proposed hand gesture recognition technique outperforms competing state-of-the-art algorithms and gets an accuracy of 86%


2020 ◽  
Vol 29 (6) ◽  
pp. 1153-1164
Author(s):  
Qianyi Xu ◽  
Guihe Qin ◽  
Minghui Sun ◽  
Jie Yan ◽  
Huiming Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document