Analysis and synthesis of fuzzy stochastic systems via LMI approach

Author(s):  
Liu Huaping ◽  
He Kezhong ◽  
Sun Fuchun ◽  
Sun Zengqi
2014 ◽  
Vol 63 ◽  
pp. 50-56 ◽  
Author(s):  
Yoshio Ebihara ◽  
Dimitri Peaucelle ◽  
Denis Arzelier

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Hongli Dong ◽  
Zidong Wang ◽  
Xuemin Chen ◽  
Huijun Gao

In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out.


Author(s):  
I.N. Sinitsyn ◽  
V.I. Sinitsyn ◽  
E.R. Korepanov ◽  
T.D. Konashenkova

The article proceeds the thematic cycle dedicated to software tools for stochastic systems with high availability (StSHA) functioning at shock disturbances (ShD) and is dedicated to wavelet synthesis according to complex statistical criteria (CsC). Short survey concerning corresponding works for mean square criteria (msc) is given. In Sect.1 basic CsC definitions and approaches are given. Sect. 2 dedicated to CsC wavelet necessary and sufficient conditions of optimality for scalar non-stationary shock StSHA (StSSHA). Methodological support is based on Haar wavelets. Sect. 4 and Sect.5 are devoted to CSK optimization ShStSHA (basic wavelet equations, algorithms, software tools and example). Several advantages of wavelet algorithms and tools are described and stated for complex ShD. Some generalization of CsC algorithms based on wavelet canonical expansion of StP in ShStSHA mentioned.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Ivan Ivanov

Stochastic linear systems subjected both to Markov jumps and to multiplicative white noise are considered. In order to stabilize such type of stochastic systems, the so-called set of generalized discrete-time algebraic Riccati equations has to be solved. The LMI approach for computing the stabilizing symmetric solution (which is in fact the equilibrium point) of this system is studied. We construct a new modification of the standard LMI approach, and we show how to apply the new modification. Computer realizations of all modifications are compared. Numerical experiments are given where the LMI modifications are numerically compared. Based on the experiments the main conclusion is that the new LMI modification is faster than the standard LMI approach.


Sign in / Sign up

Export Citation Format

Share Document