Transient stability enhancement of AC transmission system using STATCOM

Author(s):  
S.H. Hosseini ◽  
A. Ajami
Author(s):  
Ramnarayan Patel ◽  
Vasundhara Mahajan ◽  
Vinay Pant

Power engineers are currently facing challenges to increase the power transfer capabilities of existing transmission system. Flexible AC Transmission system (FACTS) controllers can balance the power flow and thereby use the existing power system network most efficiently. Because of their fast response, FACTS controllers can also improve the stability of an electrical power system by helping critically disturbed generators to give away the excess energy gained through the acceleration during fault. Thyristor controlled series compensator (TCSC) is an important device in FACTS family, and is widely recognized as an effective and economical means to solve the power system stability problem. TCSC is used as series compensator in transmission system. In the present work a TCSC controller is designed and tested over a single machine infinite bus (SMIB) as well as a multi-machine power system. Detailed simulation studies are carried out with MATLAB/SIMULINK environment and the effect of the TCSC parameter variations over the system stability is studied.


2014 ◽  
Vol 573 ◽  
pp. 340-345
Author(s):  
V. Bhavithira ◽  
A. Amudha

Abstract. This paper discusses about the available transfer capability by using Unified Power Flow Controller-UPFC. Flexible AC Transmission System-FACTS devices helps to reduce power flow on overloaded lines, thereby increasing the loadability of the power system, transient stability, damp out oscillations and also provide security and efficient transmission system. UPFC is one of the most versatile FACTS controllers. It is used for both shunt and series compensation. Newton Raphson method is used to calculate load flow for IEEE 30 bus system. By optimally placing the FACTS device Available Transfer Capability-ATC is improved. The ATC is calculated by using AC Power Transfer Distribution Factor- ACPTDF and this method is based on the sensitivity approach. Imperialistic Competitive Algorithm (ICA) is used to find optimal location of placing UPFC to improve ATC.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Shereefdeen Oladapo Sanni ◽  
Josiah Haruna ◽  
Boyi Jimoh ◽  
Usman Aliyu

This study presents the transient stability enhancement capability of Unified power flow controller (UPFC) as an effective Flexible AC Transmission System (FACTS) device in a multi-machine power system. The test system was a reduced Nigerian 330kV power system and the focus was on the effect of disturbances on the largest generating unit (Egbin) in the system. The analysis was conducted by simulating a 3-phase fault at two locations; on the terminal of the largest generator unit at Egbin bus and the bus with the largest load at Ikeja–west. The response of the system in both cases was compared with and without the device in operation. Simulations were carried out using the Power System Simulation for Engineering (PSS/E) software. Results showed that, with the UPFC in the network, system transient stability was enhanced considering that critical clearing time of the system was increased from 380ms to 590ms when the fault was at Egbin generator terminal and from 470ms to 510ms following the fault at Ikeja-west. In addition, the device was able to damp power oscillations resulting from the disturbance created by the faults.


2019 ◽  
Vol 5 (4) ◽  
pp. 8
Author(s):  
Vipin Kumar Pandey ◽  
Dr. Malaya Saurava Dash

The revolution of Power Electronics Technology has given opportunities for developing the FACTS devices for stable operation of power system. In the last two decades number of Power Electronic based devices are implemented and known as FACTS (Flexible AC transmission System).These devices are effectively used for voltage control, power flow control, harmonic elimination, damping oscillation and improving transient stability and minimization of losses. Static and Transient stability enhancement of IEEE 14 bus system is done with the help of UPFC. Fault is created at a bus and the results show that by properly placing UPFC, settling time of the system can be reduced considerably making the system stable with fewer oscillations.


Sign in / Sign up

Export Citation Format

Share Document