Membership Function, Time Delay-Dependent $\eta$-Exponential Stabilization of Positive Discrete Time Polynomial Fuzzy Model Control System

Author(s):  
Xiaomiao Li ◽  
Kamyar Merhan ◽  
Zhiyong Bao
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng Gong ◽  
Yi Zeng

This paper investigates theH∞filtering problem of discrete singular Markov jump systems (SMJSs) with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition onH∞-disturbance attenuation is presented, in which both stability and prescribedH∞performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependentH∞filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI). Finally, an example is given to illustrate the effectiveness of the result.


2012 ◽  
Vol 482-484 ◽  
pp. 1801-1804
Author(s):  
Yang Yu ◽  
Wei Wang

The paper studies fuzzy fault control for a class of nonlinear system with input delay based on T-S fuzzy model. The state feedback controller that ensures the stability of fuzzy tolerant control system is given via Lyapunov theory and derived in terms of LMI and the results are delay-dependent. Simulation examples are given to illustrate the effectiveness of the approach.


2017 ◽  
Vol 24 (20) ◽  
pp. 4921-4930 ◽  
Author(s):  
Nasrollah Azam Baleghi ◽  
Mohammad Hossein Shafiei

This paper studies the delay-dependent stability conditions for time-delay discrete-time switched systems. In the considered switched system, there are uncertain terms in each subsystem due to affine parametric uncertainties. Additionally, each subsystem has a time-varying state delay which adds more complexity to the stability analysis. Based on the Lyapunov functional approach, the sufficient conditions are extracted to determine the admissible upper bound of the time-varying delay for guaranteed stability. Furthermore, a class of switching signals is identified to guarantee the exponential stability of the uncertain time-delay switched system. The main advantage of the suggested switching signals is its independency to the uncertainties. Furthermore, these signals are only constrained by a determined average dwell time (may be chosen arbitrarily). Finally, a numerical example is provided to demonstrate the efficiency of the proposed method and also the reduction of conservatism in finding the admissible upper bound of time-delay in comparison with other stability analysis approaches.


Sign in / Sign up

Export Citation Format

Share Document