Retrieving Directional Gap Fraction, Extinction Coefficient, and Effective Leaf Area Index by Incorporating Scan Angle Information From Discrete Aerial Lidar Data

2017 ◽  
Vol 55 (1) ◽  
pp. 577-590 ◽  
Author(s):  
Guang Zheng ◽  
Lixia Ma ◽  
Jan U. H. Eitel ◽  
Wei He ◽  
Troy S. Magney ◽  
...  
2020 ◽  
Vol 12 (2) ◽  
pp. 217 ◽  
Author(s):  
Yonghua Qu ◽  
Ahmed Shaker ◽  
Lauri Korhonen ◽  
Carlos Alberto Silva ◽  
Kun Jia ◽  
...  

The leaf area index (LAI) is a crucial structural parameter of forest canopies. Light Detection and Ranging (LiDAR) provides an alternative to passive optical sensors in the estimation of LAI from remotely sensed data. However, LiDAR-based LAI estimation typically relies on empirical models, and such methods can only be applied when the field-based LAI data are available. Compared with an empirical model, a physically-based model—e.g., the Beer–Lambert law based light extinction model—is more attractive due to its independent dataset with training. However, two challenges are encountered when applying the physically-based model to estimate LAI from discrete LiDAR data: i.e., deriving the gap fraction and the extinction coefficient from the LiDAR data. We solved the first problem by integrating LiDAR and hyperspectral data to transfer the LiDAR penetration ratio to the forest gap fraction. For the second problem, the extinction coefficient was estimated from tiled (1 km × 1 km) LiDAR data by nonlinearly optimizing the cost function of the angular LiDAR gap fraction and simulated gap fraction from the Beer–Lambert law model. A validation against LAI-2000 measurements showed that the estimates were significantly correlated to the reference LAI with an R2 of 0.66, a root mean square error (RMSE) of 0.60 and a relative RMSE of 0.15. We conclude that forest LAI can be directly estimated by the nonlinear optimization method utilizing the Beer–Lambert model and a spectrally corrected LiDAR penetration ratio. The significance of the proposed method is that it can produce reliable remotely sensed forest LAI from discrete LiDAR and spectral data when field-measured LAI are unavailable.


2020 ◽  
Author(s):  
Lukas Roth ◽  
Helge Aasen ◽  
Achim Walter ◽  
Frank Liebisch

Abstract Extraction of leaf area index (LAI) is an important prerequisite in numerous studies related to plant ecology, physiology and breeding. LAI is indicative for the performance of a plant canopy and of its potential for growth and yield. In this study, a novel method to estimate LAI based on RGB images taken by an unmanned aerial system (UAS) is introduced. Soybean was taken as the model crop of investigation. The method integrates viewing geometry information in an approach related to gap fraction theory. A 3-D simulation of virtual canopies helped developing and verifying the underlying model. In addition, the method includes techniques to extract plot based data from individual oblique images using image projection, as well as image segmentation applying an active learning approach. Data from a soybean field experiment were used to validate the method. The thereby measured LAI 14 prediction accuracy was comparable with the one of a gap fraction-based handheld device (R2 of 0.92, RMSE of 0.42 m2 m2) and correlated well with destructive LAI measurements (R2 of 0.89, RMSE of 0.41 m2 m2). These results indicate that, if respecting the range (LAI ≤3) the method was tested for, extracting LAI from UAS derived RGB images using viewing geometry information represents a valid alternative to destructive and optical handheld device LAI measurements in soybean. Thereby, we open the door for automated, high-throughput assessment of LAI in plant and crop science.


2015 ◽  
Vol 36 (10) ◽  
pp. 2569-2583 ◽  
Author(s):  
Janne Heiskanen ◽  
Lauri Korhonen ◽  
Jesse Hietanen ◽  
Petri K.E. Pellikka

2011 ◽  
Vol 115 (11) ◽  
pp. 2954-2964 ◽  
Author(s):  
Feng Zhao ◽  
Xiaoyuan Yang ◽  
Mitchell A. Schull ◽  
Miguel O. Román-Colón ◽  
Tian Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document